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Does the Tail Wag the Dog? Tail Risks and Real Investment 

1. Introduction 

Output price change uncertainty plays a central role in modern theories of investment choice and 

the valuation and exercise of real options (Dixit (1989, 1991)); Dixit and Pindyck (1994)). These features 

can provide incentives to delay investments and abandon unprofitable investments. The Real Options 

Valuation (ROV) model predicts that output price uncertainty affects investment choices by influencing the 

value of the “delay” option, which presents  investors in real assets with the option to defer decisions until 

future uncertainties in prices decline. However, this prediction does not consider the “shape” of the price 

change uncertainty – i.e., the tail risks in price uncertainty, but merely controls for price volatility as the 

measure for “output price uncertainty”. A typical assumption is that output price changes have a normal 

distribution; however, this is not always true. Corrado and Su (1996) identify significant non-normality in 

S&P 500 index prices, and Diavatopoulos et al. (2012) find similar results in stock returns. Nonnormality 

of price changes of commodities is also evident (Ferderer, 1996; Dai et al., 2021). A positive output price 

shock may cause firms to begin production, whereas a negative shock could motivate firms to shut down 

production. When we expect large price changes as “outliers”, compared with cases where price changes 

are more likely to be around their expected values, investment decisions may differ. The pioneering work 

by Bernanke (1983) indicates  that the “bad side” of price uncertainty determines the value of the “delay” 

option, calling for a study of the differentiated impacts of positive and negative price uncertainty.  In this 

study, we specify and estimate models of investment choice that allow us to test the influence of tail risk in 

output prices on oil firms' decisions regarding oil well production, shutting-in, drilling, and closure. 

Oil exploration and production is a sector in which there can be substantial uncertainty surrounding 

future oil prices and significant sunk costs of investment and where output price changes exhibit non-normal 

behavior. Thus, the investment and production behaviors of firms operating in this sector provide an ideal 

setting for studying the impact of expected skewness and kurtosis on these decisions. Oil price changes 

exhibit high volatility (Ferderer (1996)) but also nonzero skewness and excess kurtosis. Many existing 

studies (Dai et al. (2021)) demonstrate the existence of nonzero skewness in oil prices, which we confirm 

along with the presence of excess kurtosis, calling for a revisit of the empirical relations between investment 

and production decisions and the moments of the price change distribution, accounting for higher-order 

moments. We empirically examined oil firms’ investment choices when facing price uncertainties. The 

decisions of oil firms to open new wells, close existing wells, or temporarily shut-in wells are examined 

regarding asymmetry and extreme cases in output price change distributions. The empirical findings suggest 

that asymmetry and outliers in output price changes are significant factors in firms’ investment decisions, 

either proceeding immediately with projects or delaying them. Skewness can cause a 27% difference in the 
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(dis)investment choices for well closure when skewness increase by one standard deviation. These impacts 

remain significant even after controlling for heterogeneity among oil wells, locations, information spillover 

effects, hedging decisions, and financial constraints. A decision model incorporating the tail risks of 

asymmetry and outliers shows significantly different predictions (up to approximately 50% and a $10 

million potential value loss) from a model that excludes these factors. The impact of tail risk on investment 

choices is significant, even when compared to the effects of the standard deviation of price changes. This 

suggests that the significant effects of tail risks on investments should be extended to broader investment 

considerations. 

We examine oil firms’ investment decisions from January 2010 to September 2019. This includes 

monthly data from approximately 600,000 individual oil wells in five U.S. states–California, Pennsylvania, 

Oklahoma, Texas, and South Dakota–totaling 53 million observations. The validity of this rich dataset 

allows us to comprehensively examine oil-well investment choices. We control for the location, drilling 

type, depth, age, productivity, drilling cost, and maintenance cost of each oil well. Additionally, by linking 

to oil well operators’ firm identification, we obtain data on the financial performance and characteristics of 

the decision-makers, including leverage, hedging strategies, and standard error clusters, in the estimated 

models to examine how firms’ operations and finances affect investment choices. The data provide insights 

into the production status and timelines of drilling and closing each oil well investment project, and the 

financial condition of the operators. 

While a company’s quarterly or yearly capital expenditure provides a glimpse into its capital 

spending decisions, a deeper understanding requires disaggregated microlevel data observed at a higher 

frequency. First, we measure the data monthly and provide information on new investment (drilling), 

disinvestment (abandonment), and shut-in (producing or mothballing) choices. Second, the primary 

uncertainty these companies face is price uncertainty, reflected in the distributional characteristics of oil 

prices. Third, the examined dataset allows for comparing choices across different geographical locations 

and states. The dataset examined included up to 53 million observations that span ten years and multiple 

geographic areas and states in the United States. Statistical approaches involve estimating Cox proportional 

hazards models structured to investigate the choice to drill and shut down (abandon) and dynamic panel 

probit models to investigate the choice to continue producing or temporarily stop production.  

In the existing literature on real investments using capital investment data, firms’ output prices, 

such as wholesale output prices, are rarely observable and quantifiable at a high frequency. For instance, 

Moel and Tufano (2002) use yearly data on the opening and closing of gold mines to examine how price 

volatility affects decisions while Doshi et al. (2018) study quarterly data. An important exception is Kellog 

(2014) who studies monthly data. Furthermore, the physical realized volatility, skewness and kurtosis of 
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output prices may not accurately reflect market beliefs about the future values of these parameters. To 

resolve this issue, we use WTI crude oil option prices from the CME to estimate the option-implied risk-

neutral distribution’s central moments of oil prices at the market level. WTI oil options are actively traded 

on the CME, with a wide range of strike prices compared to call and put options. From the settlement prices 

of these options, we can recover the market investors’ perceived riskiness of WTI crude oil prices and 

capture the asymmetry and outliers of the oil price change distribution from the amounts investors pay for 

calls and puts over different strike prices. For WTI oil options with different maturity terms, we can extract 

the moments of oil price changes over different investment horizons that match the investment horizons for 

oil well decisions on opening, closing, and shutting. Following Bakshi et al. (2003, BKM), we estimate the 

risk-neutral volatility, skewness, and kurtosis of oil price changes daily over a wide range of investment 

horizons from January 2010 to September 2019. 

Our results show that the expected skewness and kurtosis of the price change distribution are 

important determinants of oil producers’ investment activity decisions, consistent with the predictions of 

the option pricing theory accounting for higher-order moments. The results suggest that option-implied 

higher-order moments are proxies for jump or crash risks in output prices (oil futures prices) and leptokurtic 

risk. These characteristics have a significant impact on the propensity to choose to switch between 

“producing” or “mothballing.” Our results show that when option-implied oil price skewness increases by 

one standard deviation, the propensity to exercise a real option for irreversible investment decisions 

increases (e.g., re-opening a mothballed oil well). When the implied kurtosis in oil prices increases by one 

standard deviation, the likelihood of investment increases. The propensity to close an oil well immediately 

increased by 27.51% when the skewness increased by one standard deviation, and the propensity to drill a 

new well increased by 5.73% when the kurtosis increased by one standard deviation. The potential value 

loss if not adopting a tail risk-incorporated decision model counts towards $879,860, a possible monthly 

value diff, and a $10,558,320 value difference per year for an average oil firm. Finally, our main results are 

more consistent with decision-makers following value-maximizing decision rules than imposing their 

individual investor preferences for skewness and kurtosis.  

In addition to estimating the potential value loss for oil firms, we also consider the impacts of firms’ 

financial conditions, including leverage, hedging strategies, and other potential factors, such as the shape 

of the term structure of oil prices and oil well heterogeneity. We manually collect each oil well’s hedging 

positions and annual oil production and find that hedging strategies do not alter the conclusion that tail risks 

are important for oil firms. Fewer leveraged firms respond to changes in tail risk when making oil 

investment decisions. We also test the robustness of the results using the realized distribution moments of 
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oil price changes. We find results similar to the main results using risk-neutral distribution moments, 

suggesting that the proxies for oil prices do not matter significantly. 

Kellogg (2014) shows that volatility in oil prices affects oil firms’ investment decisions by delaying 

their drilling activities if volatility increases, which is consistent with the predictions of Real Options 

Valuation (ROV). Decarie (2020) demonstrates that natural gas firms respond to various market factors. 

Doshi et al. (2018) showed that financial constraints affect oil drilling decisions. This paper is the first to 

show how the asymmetry and outliers, the higher-order moments of price distributions, affect the ‘shape’ 

of the uncertainty when controlling for volatility and how they impact investment choices. The primary 

question we ask, and answer is accomplished through the specification and estimation of discrete choice 

models utilizing a comprehensive sample of over 53 million well-month observations of micro-level oil 

well drilling and the operational decisions of operators in five major oil-producing states. The utility of 

such data has not gone unnoticed, forming the basis for the investigations by Kellogg (2014), Gilje (2019), 

Anderson et al. (2018), and Décaire et al. (2020). Oil and gas producers tend to expand drilling and 

completion activities only when prices are high and, at the same time, do not rapidly close or plug wells 

when prices are below the marginal cost of production. To our knowledge, this is the first study to 

investigate the implications of non-normal output prices on firms’ investment and production decisions.   

Section 2 presents a brief review of real investment theory and the implications of price uncertainty 

in the presence of  irreversible investment decisions. Section 3 presents an economic model of investment 

choice and develops hypotheses on the relationship between the real options exercise and implied skewness 

and kurtosis. In Section 4, an econometric framework is developed to test the hypotheses, and the data are 

discussed. Section 5 presents and discusses the empirical results. Section 6 presents the summary and 

conclusions. 

2. Real Investments and Tail Risks 

2.1 Irreversible Real Investments and Price Uncertainties 

Real investment decisions have four important characteristics. First, the investment is entirely or 

partially irreversible. In other words, investments involve sunk costs. Secondly, investments involve risky 

payoff streams. Third, new information arrives over time, which can influence the expectations of future 

risky payoffs. Fourth, most investment opportunities do not necessarily disappear if not taken up 

immediately. That is, the investment decision involves whether to invest and when. 

The study of real investment activity and the theory of optimal investment choice by firms has a 

long and rich history (see Caballero (1999), Girardi (2021), and references therein). The foundations of the 

optimal decision rule for firms’ investment choices stem significantly from the Fisher Separation Theorem 
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(Fisher (1930)) and Hirshleifer (1958, 1970), while the work of Tobin and Brainard (1976) and Hayashi 

(1982) significantly impacts the study of such choices under uncertainty. These frameworks lead us to what 

is commonly referred to as the net present value rule (NPV). However, the implications of sunk costs and 

future uncertainty play an important role in what many would call the modern theory of investment under 

uncertainty, highlighting the value of real options (ROV) embedded in investment and production 

opportunities. 

While the NPV rule does not explicitly indicate the relationship between uncertainty (price 

volatility) and real investment (Samis et al. (2005)), Dixit and Pindyck (1994) amongst others show that 

accounting for the option to change investment and production (the real options valuation ROV approach) 

suggests that an increase in uncertainty can lead to investment postponement. The underlying well-known 

principle is that an option’s value increases as expected volatility increases. The ROV predicts that more 

significant price uncertainty leads to an increase in the real option’s value and postponement of the option’s 

exercise (Bernanke (1983), Dixit and Pindyck (1994), Abel et al. (1996)). 

The relationship between price uncertainty and investment choices has been the theme of numerous 

studies focusing on other (than oil) industries and general industry sectors. Drakos and Konstantinou (2013) 

present a connection between price uncertainty and investment decisions in the manufacturing industry. By 

examining capital investment decisions, Doshi et al. (2018) show that the tendency to follow real options 

exercising rules depends on firm size. They find that larger firms are less likely to follow these rules, as 

they mainly hedge output price risk and avoid detrimental price movements and uncertainty. Other studies 

on real options include Pindyck (1993) on the effects of cost and technology uncertainty on real options 

investment; Aizenman and Marion (1993a, 1993b) on the impacts of policy and macroeconomic uncertainty 

on investments; Lensink and Morrissey (2000), who examine the investment-uncertainty relationship at the 

aggregate level; Leahy and Whited (1995), Kang et al. (2014), and Gulen and Ion (2016), who examine the 

influences of policy uncertainty on investment; Jens (2017) who discuss political uncertainty effects.‡ 

Studies on the relationship between uncertainty and oil investment include Mohn and Misund (2009) 

at the aggregate level and Yang et al. (2008) at the micro and firm levels. Studies focusing on the impact 

of price volatility on investment include Elder and Serletis (2010), Yoon and Ratti (2011), Ahmadi et al. 

(2019), Phan et al. (2019), Cao et al. (2020), Maghyereh and Abdoh (2020), and Doshi et al. (2018), 

consistently find that price uncertainty negatively affects investment. However, some recent studies do not 

support the negative uncertainty-investment relationship. For instance, Miao and Wang (2007) showed that 

 
‡ Gulen and Ion (2016) find evidence of a negative relationship between firm capital investment and policy 

uncertainty captured by a news-based index. 
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uncertainty is positively associated with investment when the market is incomplete and risk cannot be 

perfectly hedged. Lambrecht (2017) surveys the literature.  

2.2 Skewness, Kurtosis, and Investment 

The option to “delay” investment or divestment increases in value when volatility increases when 

price changes follow Geometric Brownian motion (Dixit and Pindyck (1994))§. However, this assumption 

does not explicitly address the case whn price changes exhibit non-normality.  

Although the study of skewness and kurtosis in financial security returns has a long history (Conrad 

et al., 2013), the literature largely ignores the implications of skewness and kurtosis on real investment 

activity. One exception is Schneider and Spalt (2016), who show the relationship between project return 

skewness and investment decisions, but not within the framework of the ROV. Boyarchenko and 

Levendorskiǐ (2002) and Boyarchenko (2004) derive the optimal exercising rules of RO assuming a  jump-

diffusion price process and suggest that their model potentially indicates a skewness-kurtosis and 

investment relationship.**  Bernanke’s theoretical development of his “Bad News Principal” (Bernanke 

(1983)) indicates that only adverse price shocks matter in the optimal timing of real investment.  

2.3 Tail Risks and Oil Real Investments 

Myers (1977) indicates that Real Options Valuation explains the “conservative” leverages of firms 

with market investment opportunities and real options whose value is negatively related to risky debt. 

Aguerrevere (2009) highlights the importance of real options in influencing investment decisions under 

different market conditions. Mayers (1998) analyzed the convertible bond value using the ROV. Compared 

 
§ The Geometric Brownian Motion can be denoted as: 𝑑𝑃/𝑃 = 𝛼𝑑𝑡 + 𝜎𝑑𝑧, where 𝛼 is the drift parameter and 𝜎 is 

the variance parameter, the measure for uncertainty risk. 

** A separate literature has focused on the implications of skewness and kurtosis of financial security returns. One 

strand of the literature reveals that the relationship between equity investment and probability distribution skewness 

and kurtosis depends on forms of investor utilities (Brunnermeier and Parker (2004)). For example, Kraus and 

Litzenberger (1976) show investors’ preference for positive skewness in the equity market, suggesting a non-quadratic 

form of investor utility. Another strand of studies explains the influences of skewness and kurtosis on investor 

preferences. For instance, Harvey and Siddique (2000) find that investors require a positive premium for systematic 

skewness, and Boyer et al. (2010) find a negative return premium for idiosyncratic skewness. While the previously 

mentioned studies use central return moments, others focus on the risk-neutral moments of returns. For instance, 

Conrad et al. (2013) reveal that more positive risk-neutral skewness is strongly related to lower subsequent returns. 

Bali and Murray (2013) show that risk-neutral skewness is negatively related to the equity portfolio returns. Both 

studies suggest investors’ tendency to hold assets with positive skewness. Furthermore, Bali and Murray (2013) show 

that, although both sides of skewness influence asset returns, left-hand side skewness is remarkably priced into 

skewness assets by investors. Bali and Murray (2013) point out that exposure to skewness can be asymmetric by 

decomposing the left- and right-hand sides of skewness risk. Studies on implied higher moments and security price 

include Datta et al. (2017). Kurtosis is strongly related to investors’ preferences and returns premiums. Related studies 

include Dittmar (2002) focus on the investor’s preference on kurtosis, and other studies like Arouri and Nguyen (2010), 

Diavatopoulos et al. (2012), and Bachmann and Bayer (2014) explore the relationship of investment and both 

skewness and kurtosis. 
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with capital investment data, oil well drilling, closing activities, and crude oil prices have become rich data 

for exploring investment problems. First, a company’s capital investment data have a low observation 

frequency and are reported every quarter. Second, company-level data are unable to observe output prices 

directly. By contrast, oil well drilling, production, and closing records from Oklahoma, Texas, Pennsylvania, 

North Dakota, and California were reported to agencies every month, with observable price distribution 

moments from options markets as an ideal setting for examining real investment choices and price 

uncertainties. 

Kellogg (2011) and Covert (2015) examined learning and productivity in well-drilling and fracking, 

respectively. Molls (2001) studied Oklahoma oil well production and found that sunk costs and historic 

price change volatility helped explain oil well drilling decisions. Moel and Tufano (2002) found that gold 

mining’s entry and exit options exercising behaviors are negatively related to uncertainty. Kellogg (2014) 

studied oil well-drilling activity in Texas and concluded that it is strongly affected by price uncertainty, 

measured as price change volatility. He found greater volatility was associated with a higher probability of 

postponing drilling activity. Using drilling data from similar oil wells, Décaire et al. (2020) found that an 

information spillover effect influences drilling activity. Specifically, drilling in neighboring oil fields 

encourages oil-well drilling in adjacent areas. However, these studies do not control for price uncertainty. 

Doshi et al. (2018) studied quarterly investment expenditures of energy companies and documented an 

inverse relationship between oil price volatility and aggregate quarterly expenditures among smaller firms. 

Boomhower (2019) and Muehlenbachs (2015) studied firms’ decisions to abandon or environmentally 

remediate no longer productive wells. Anderson et al. (2018) studied production and drilling activities in 

Texas and found that, while the expected price influences drilling activity, it does not affect productions.  

Chen and Linn (2017) study rig activity in the U.S. and find that rig activity in developed economies is 

positively related to oil futures prices. A more recent study (Bloom et al. (2022)) shows that the skewness 

of sales growth survey predictions by manufacturers does not explain changes in capital investment. 

3. Option Valuation with Higher Order Moments 

3.1 Real Options Pricing and Modified B-S Model 

The Black and Scholes call option pricing model is expressed as: 

𝐶𝑅𝑂𝑉,𝐵𝑆 = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2) 

where S is the underlying asset’s current value, K is the exercise price of the real option, N(x) is the 

normal c. d. f., and d1 and d2 are parameters that depend on the log price change volatility (Hull (2003)). 

Jarrow and Rudd (1982), Corrado and Su (1996a, 1996b), and Brown and Robinson (2002) develop 

option valuation models in which the log-price change distribution of the underlying asset may exhibit 
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higher-order moments, that is skewness and kurtosis, which deviate from the parameters of the normal 

distribution.  The call option price when the log price change distribution of the underlying asset exhibits 

skewness and kurtosis is equal (Brown and Robinson (2002)).‡‡ 

𝐶 = 𝐶𝐵𝑆 + 𝜇3 ∙ 𝑄3 + (𝜇4 − 3) ∙ 𝑄4 

where 𝜇3  and 𝜇4  represent the skewness and raw kurtosis of the log-price change distribution, 

respectively. Parameters 𝑄3 , and  𝑄4  are linear functions of option moneyness. If skewness equals 0, 

kurtosis equals 3, and volatility is positive, the model reduces to the Black-Scholes price. Therefore, the 

exercise of real options may be influenced by expected future volatility, skewness, and kurtosis.  

3.2 Oil Well Lifecycle - Drilling, Producing, Mothballing, and Shutdown 

The life cycle of an oil well comprises several stages, from testing to plugging. 1) First, a seismic 

survey of an oil well usually includes testing for the estimated quantity of expected total production and the 

measured depth of the oil reserve. On average, it takes approximately three months to complete the drilling 

process.§§ 2) After drilling ends and the well is completed, production may begin, and the oil well moves 

to its second stage, “producing.” At this stage, oil producers consider the expected oil price (and distribution 

moments) and the cost of maintaining production to decide on production status. 3) Mothballing is a 

temporary suspension of production. When facing bad news for production, such as price shocks or surges 

in operating costs, producers can move the oil-producing well. 4) Mothballing status is an intermediate 

status between “producing” and “shut down” but it requires a medium level of maintaining cost to keep this 

status. The benefit of maintaining the “mothballing” status is that oil producers still have the option to 

resume production. 5) The last stage of an oil well is “shutdown” – when producing or maintaining the well 

is no longer economical or when the oil wells are exhausted. Re-opening a plugged oil well is generally not 

possible and, where possible, is extremely costly. 

4. Value Maximizing Choices 

4.1  The Choice Problem 

Define the objective function for each oil producer as 𝛾: 

𝛾 = max
𝑝𝑟𝑜𝑑

𝑉(𝑃, 𝑄, 𝐶, ℂ, 𝜃, 𝑂) 

 
‡‡  𝑄3 =

1

3!
𝑆0𝜎√𝑡[(2𝜎√𝑡 − 𝑑)𝑛(𝑑) + 𝜎2𝑡𝑁(𝑑)] and 𝑄4 =

1

4!
𝑆0𝜎√𝑡[(𝑑2 − 1 − 3𝜎√𝑡(𝑑 − 𝜎√𝑡))𝑛(𝑑) + 𝜎2𝑡3/2𝑁(𝑑)], where 𝑆0 

is the underlying asset price, 𝜎 is stochastic volatility, 𝑛(𝑑) and N(𝑑) are p.d.f. and c.d.f. of d =
ln(

S0
K

)+(r+σ2/2)t

σ√t
 (Brown and 

Robinson, 2002, eq.3&4). 
§§ For a detailed description of the drilling process see https://production-technology.org/. 
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where 𝑃  is the oil price change, which may reflect higher-order moments, and 𝑄  denotes the 

quantity of crude oil output. 𝐶 represents the costs incurred in each period, reflecting the well, production, 

or mothballing status.  ℂ is the one-time investment (disinvestment) cost (e.g., drilling or closing costs). 

The vector 𝜃 includes oil well characteristics, such as reserve and productivity. Real option choices are 

subsumed in vector 𝑂. 𝑂 allows the producer to shift from one status to another; an example of such a shift 

is changing from an undrilled field to drilling a new oil well or shutting down the production of a producing 

oil well. Such shifts change the production status of an oil well, and the available options depend on the 

status of the well. 

We denote the multi-period dynamic problem of investment choices for the oil producer as the 

solution to the following Bellman equation,††† expressed as current profit plus the value of future expected 

profits, assuming optimal continuing choices after one production period: 

𝛾 = max
𝑝𝑟𝑜𝑑

𝐸𝑡(𝑉(𝑃, 𝑄, 𝐶, ℂ, 𝜃, 𝑂)) = max
𝑝𝑟𝑜𝑑

(𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡) +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡)) 

where 𝕀𝑡 denotes the information set of the producer at time t. For instance, consider the criteria 

for continuing in the mothball state or switching to production.  The difference in the objective function 

between choosing to resume production for an oil well and continuing to move the well is‡‡‡ 

∆𝑉𝑡(𝑆𝑡𝑎𝑡𝑢𝑠𝑡−1 = 𝑚)

= �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃) − 𝐶𝑝 − ℂ + 𝐶𝑚

+
1

(1 + 𝑟)
(𝐸𝑡(𝑉𝑡+1|𝑆𝑡𝑎𝑡𝑢𝑠𝑡 = 𝑝) − 𝐸𝑡(𝑉𝑡+1|𝑆𝑡𝑎𝑡𝑢𝑠𝑡 = 𝑚)) 

where 𝑚 denotes the status, the producer faces when making their decisions, 𝑚 is the mothballing. 

If the producer chooses to resume production (where 𝑝 is producing), the difference in the producer’s 

expected profit would be current profit �̌� minus the difference in the operating costs (−𝐶𝑝 + 𝐶𝑚), minus 

the one-time transition cost −ℂ, along with the difference in expected future profits. Ideologically, such a 

difference in expected profits, ∆𝑉𝑡, will be determined by the distribution function of the oil price changes, 

𝑃𝑡, which incorporates skewness and kurtosis that influences the output prices the producer may retain. 

Similar criteria can be identified for the choice to drill or postpone drilling and the choice to continue 

production versus complete shutdown. 

4.2 Exercises of an American Real Option 

 
††† Molls (2001) presents a similar specification. 
‡‡‡ Appendix B gives more details for the derivation of the equations.  
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Boyarchenko and Levendorskii (2000, 2002) and Boyarchenko (2004) solve the theoretical 

framework of asymmetry in output prices and optimal exercise prices, suggesting that skewness and 

kurtosis potentially affect an American real option exercise’s threshold by affecting the parameters of price 

asymmetry. Theories predict that skewness negatively affects the likelihood of exercising, and kurtosis 

effects decrease the trigger threshold.  

The issue of non-normality in output prices when determining the optimal real options exercise 

policy has been addressed in the existing literature. Researchers have utilized real analysis methods, starting 

by defining the specifications of the underlying price process and then solving for the optimal exercise 

prices and their relationship to the parameters in the process specification. This approach follows the 

framework established by Dixit and Pindyck (1994), with variations in assumptions for the underlying 

price-generating process. Relevant references include McDonald and Siegel (1986), Kjærland (2007), 

Darby et al. (1999), and Nielsen (2002). Other methods, such as using binary lattices to solve the real 

options problem, are discussed in works like Smith (2005). 

We did not directly explore the underlying processes that may give rise to skewness and kurtosis. 

However, empirical simulations show that a general model incorporating mean reversion and random jumps 

in addition to Brownian motion produces data exhibiting skewness and kurtosis for reasonable parameters.  

Such models have been found to fit oil futures price change data.§§§ 

4.3  Empirical Models 

The economic choice model involves a set of optimal actions. Therefore, a natural framework for 

analysis is a choice-based empirical model that captures the state of a well and the characteristics of the 

output price change distribution along with other factors that should influence future cash flows, such as 

costs and production capacity. The first model involves continuing in the mothball state versus beginning 

production. Thus, we propose the following econometric model for the resumption problem:  

𝑃𝑟𝑜𝑑𝑖,𝑡 = Φ(𝛼0 + 𝛽1 ∙ 𝑃𝑟𝑖𝑐𝑒𝑡 + 𝛽2,3 ∙ {𝑃𝑟𝑜𝑑𝑖,𝑡−1} ∙ 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 + 𝛽3,4 ∙ {𝑃𝑟𝑜𝑑𝑖,𝑡−1} ∙

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 + 𝛽5,6 ∙ {𝑃𝑟𝑜𝑑𝑖,𝑡−1} ∙ 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑡 + 𝛥 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡 +𝜀𝑖,𝑡)                         (1) 

 
§§§ In the double exponential jump-diffusion process suggested by Kou (2002), the intensity of jumps on either side changes the 

higher-order distribution of prices. A greater intensity of jumps in the lower side decreases skewness and any non-zero jump 

intensity increases the excess kurtosis of distribution. A more recent study by Boyarchenko and Levendorskiǐ (2000) derives the 

theory for the optimal exercising rule under the Lévy processes of prices which they suggest could solve the real options problems 

with skewed prices and outliers, as well as Asmussen, Avram, and Pistorius (2004) who derive the put options with Lévy processes.  

See also Merton (1976), Bates (1997), Zhang (1997), Arnold and Crack (2000), Gukhal (2001), Lewis (2001), Kou and Wang 

(2004), Levendorskiǐ (2005), and Sepp (2008). 
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where 𝑃𝑟𝑜𝑑𝑖,𝑡  denotes the production status for oil well i in month t and 𝑃𝑟𝑖𝑐𝑒𝑡 , 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 , 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 , 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑡  are the expected level, volatility, skewness, and kurtosis of oil price changes, 

respectively.  

𝑃𝑟𝑜𝑑𝑖,𝑡=1 for producing and =0 for mothballing. A panel binary dependent variable model can be 

used to examine the relationship between the distribution moments and choices.  

The choice to drill and shut down involves irreversible investment choices; that is, such decisions 

cannot be reversed. For example, a drilled oil well will not recover to its original condition without incurring 

significant costs, and for a closed oil well is almost impossible. The decisions to drill and shut down occur 

only once for each oil well. Thus, they are comparable to the occurrence of hazard events and can be written 

as a proportional hazard model:**** 

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑖,𝑡 =  Φ(𝛼0 +   𝛽1 ∙ 𝑃𝑟𝑖𝑐𝑒𝑡 +  𝛽2 ∙ 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 +  𝛽3 ∙ 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 +  𝛽4 ∙ 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑡 +

𝛥 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡  +𝜀𝑖,𝑡)                                                                                                                                  (2) 

and                                                                                                                       

𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑖,𝑡 =  Φ(𝛼0 +   𝛽1 ∙ 𝑃𝑟𝑖𝑐𝑒𝑡 +   𝛽2 ∙ 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 +  𝛽3 ∙ 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑡 +   𝛽4 ∙

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑡 + 𝛥 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡 +𝜀𝑖,𝑡)                                                                                                             (3) 

Here, 𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑖,𝑡 and 𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑖,𝑡 denote the start of the drilling activities or the state of a closed 

oil well. 

Table 1 shows the predictions of the signs of the coefficients according to the modified Black-

Scholes option pricing model and ROV. It also shows the predictions of the coefficients of other important 

controls for the models, which we introduce in Section 4. 

(Insert Table 1. Here) 

5. Data and Methods 

(Insert Table 2 here.) 

5.1 Oil Well Investment and Production Data 

5.2 Records of Oil Wells’ Drilling, Production, and Closing Dates  

Oil well production rates, dates, date production begins, and date production ends are obtained from 

Enverus.‡‡‡‡ Data obtained include a well identifier code (a unique well identification 14-digit number: 

 
**** Décaire et al. (2020) use Cox proportional model. 
‡‡‡‡ Enverus.com. we am grateful to Enverus for providing us with access to their well production and cost datasets 

and especially to Ms. Annie Shen and Mr. Jason Eleson for their very generous help. 
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American Petroleum Institute, short for “API”), the well’s operator company’s names, the well’s monthly 

oil production rates, gas production rates, and water production rates, well’s measured depth in tens of 

thousands of feet, a well lease identifier (and lease names), the basin where the well is located, well’s field 

name, and location’s county and state names, total drilling costs, the date drilling begins (the spud dates), 

the dates when the well begins production (the completion dates), well’s peak production rates, well’s first 

6-months’ and first 12-months’ production rates, and age of the well measured as the number of months 

from the first production date, and the date a well is closed off so that it stops producing (the “last production” 

dates).  

Records of more than 600,000 oil wells were obtained from Texas, North Dakota, Oklahoma, 

California, and Pennsylvania. According to their monthly oil production rates and the first and last 

production months, we constructed the production histories/statuses for each of the 600,000 oil wells every 

month. The earliest date was January 2010, and the last was September 2019.§§§§ 

(Insert Table 3 here.) 

5.3 Oil Futures Prices and Implied Moments 

We use BKM’s (Bakshi, Kapadia, and Madan (2003)) risk-neutral model-free option-implied 

central moments to estimate current beliefs about future volatility, skewness, and kurtosis of the oil price 

change distribution. These estimates  are constructed from futures and futures’ options prices.  

Daily crude oil futures prices and options on futures prices (LO) were obtained from the Chicago 

Mercantile Exchange (CME) Group Datasets (End-of-Day Complete database). The data were used to 

compute a proxy for the expected oil price and option-implied volatility, skewness, and kurtosis at future 

time horizons. Only option prices with maturities between 10 and 180 days–the most liquid options 

contracts–are utilized, as contracts expiring or far from maturity are traded thinly, and their settlements are 

noisier. Options and futures prices clearly out of line relative to the averages are assumed to be recording 

errors and excluded. Risk-free rates were obtained from the OptionMetrics files using the WRDS. Risk-

free rates were extrapolated and interpolated to ensure sufficient data for maturities spanning 10-180 days.  

We follow Chang, Christoffersen, and Jacobs (2013) and Ruan and Zhang (2018) in computing the 

risk-neutral central moments of the price change distribution. First, the data are filtered by a) dropping 

 
§§§§ The spud date identifies when drilling begins and investment costs are incurred. The production status histories, 

allow recovery of the investment decisions (choices between producing and mothballing) of oil producers through 

every oil well’s entire production history during the ten-year period studied. The histories allow identification of the 

investment date (which we classify as the spud date) and the decisions to temporarily suspend production and to 

abandon (shut in) a well.   The production histories therefore provide information on the state of the well at any date. 

Each oil wells’ drilling and shutdown profiles are constructed from the well spud dates and their last production dates.  
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option prices lower than 3/8 (minimum tick), b) dropping deep-in-the-money options (put options with an 

exercise price higher than 103% of the futures price and call options with an exercise price lower than 97% 

of the futures price), and c) dropping prices on days with fewer than two put or call prices and/or options 

prices violating arbitrage conditions.***** Second, to expand the option prices set from the CME option 

settlement prices, we expand the moneyness range within a date and maturity using the moneyness values 

of existing observations. The expansion uses a cubic spline interpolation method. We expand the 

moneyness for each date and maturity to the range between 0.0001 and 3 and use the implied volatility 

(from the CME’s modified Black-Scholes option pricing model) to interpolate and extrapolate the implied 

volatilities in that range. Third, we use implied volatilities to infer option prices using the Black-Scholes 

option in the futures pricing model to obtain a smooth option price function in the moneyness 0.0001 and 

3 range for each date and maturity. †††††  

We computed the 18-month BKM risk-neutral implied central moments. Kellogg (2014) points out 

that “18 months” is a typical horizon for oil operators to observe prices. Décaire et al. (2020) use similar 

measures for price and volatility. Also, Slade (2001) mentions that “Most firms use a long-run commodity 

price” for decision purposes. These producers usually consult forecasted long-run output prices for 

investment decisions according to survey results with copper producer managers. Specifically, using futures 

prices, we estimate the term structure of oil return realized central moments and then compute 10-180 days 

central moments to interpolate the one-month maturity central moments.‡‡‡‡‡ Then, the one-month central 

moments and term structure were used to extrapolate the 18-month maturity central moments. However, 

we use the one-month price and central moments for the production examination model because the 

transition between production and mothballing can occur immediately.  

We assume that the physical timing to drill or shut down is not immediate but that the time between 

the formal evaluation and the actual implementation of the choice occurs with a lag.§§§§§ Three-month lags 

in the estimated central moments are employed in the analyses presented later for the drilling and shutdown 

examination models.****** We calculate the 18-month forward central moments using the average of the 18-

month maturity futures settlement prices. Both the 18-month and the one-month oil prices were deflated 

and scaled by 100 to fit the scale of risk-neutral moments. Oil producers can observe the monthly average 

 
***** Arbitrage conditions: excluding observations of option prices when a call option’s price is greater than or equal 

to present value of futures prices or when a call options’ price is lower than or equal to the present value of futures 

prices minus present value of strike prices. 
††††† For more detail on the trapezoidal integration of central moments, please see p.587-588 of Ruan and 

Zhang(2018). 
‡‡‡‡‡ The method follows Kellogg (2014, Appendix A). 
§§§§§ This follows Kellogg (2014) – it usually takes three months to commence drilling after decision.  
****** Computation details are available upon request. 
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forward price and distribution moments to determine whether to continue production or shut it. Our sample 

is every month for each well; we can only observe the changes in the oil well-producing states in the months. 

6. Empirical Results 

6.1 The Choice to Drill or Defer 

The examination of the drilling decision is similar to that of Kellogg (2014) and Décaire et al. 

(2020), except that we account for the influence of the skewness and kurtosis of the price change distribution, 

in addition to volatility and study a sample that spans multiple producing states of the United States. We 

examine the relationship between drilling an “infill oil well” and the magnitude of price distribution 

moments to explore the effects of price uncertainty on irreversible investment decisions, as the uncertainty 

affects investment options value. ††††††  To identify infill wells, we exclude the first wells in a field 

(exploratory wells) and retain only the first drilled wells whose spud dates are between March 2010 and 

September 2019, when oil price data are available in our dataset. We dropped wells with spud dates before 

or in March 2010 or shut them down after September 2019. Undrilled fields were identified as “unexercised 

options” with drilling=0 throughout the date range for all months up to the spud date, at which we assigned 

drilling = 1.  

(Insert Table 4 here.) 

The analysis of the option to drill when considering infill drilling has the feature that as new wells 

are drilled, the availability of new drilling options decreases. As Kellogg (2014) points out, a probit 

specification (or the linear probability model) is not an appropriate structure to account for this dynamic, 

and Décaire et al. (2020) agree with their analyses.  However, the Cox proportional hazards model fits the 

described settings.‡‡‡‡‡‡    

We construct the dataset of the unexercised “drilling” options by assigning drilling=0 for the 

months between the beginning of a lease’s production and the last month before drilling. The dependent 

variable drilling=1 during the spud month. Thus, the months with drilling=0 are when the wells remain 

 
†††††† Schlumberger describes infill drilling as “The addition of wells in a field that decreases average well spacing. 

This practice both accelerates expected recovery and increases estimated ultimate recovery in heterogeneous 

reservoirs by improving the continuity between injectors and producers. As well spacing is decreased, the shifting 

well patterns alter the formation-fluid flow paths and increase sweep to areas where greater hydrocarbon saturations 

exist.” https://glossary.slb.com/en/terms/i/infill_drilling 
‡‡‡‡‡‡ The Cox proportional-hazards model (Cox, 1972) is a model used for investigating the association between the 

survival time of an entity, person, etc., and one or more predictor variables. Basically, it is formulated to model how 

a set of specified factors influence the rate of a particular event happening (e.g., drilling a well) at a particular point 

in time. This rate is commonly referred as the hazard rate. See Cameron and Trivedi (2005, Ch. 17) for a review of 

the Cox Proportional Hazard Model. 
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undrilled, and the months with drilling=1 are when the wells are drilled. Each well enters the data when it 

becomes available for drilling (when the first well in the lease spuds, oil producers can prepare an infill oil 

well to boost oil production). Months after the spud dates were truncated.§§§§§§ This oil well has drilling=0 

for the months after it enters the sample up to the month of drilling; however, after, it is no longer an 

opportunity, as it has been drilled. Hence, on any date until drilling, there is a probability that it will be 

drilled, conditional on the economic factors prevailing at that time. Hence, this dynamic fits the Cox model 

well.  

Column (1) of Table 4 reports the estimation results.  The results indicate that price is positively 

related to the probability of drilling, and volatility is negatively associated with likelihood. These 

conclusions are consistent with the existing literature on real investment . The finding that price (volatility) 

is positively (negatively) related to the probability of drilling is consistent with the results presented by 

Moel and Tufano (2002), Kellogg (2014), and Décaire et al. (2020). Anderson et al. (2018) found that oil 

well production does not respond to price changes.  

We find evidence that higher-order moments influence the choice to drill. Column (2) of Table 4 

shows that when the kurtosis increases by 1.00, the probability of drilling a new oil well increases by 26.24% 

(an exponential of 0.233). This finding suggests that tail risk in the price distribution of output influences 

the decision to invest.  

We also find that a well’s oil reserve is an essential determinant of drilling decisions – reserve has 

a positive and significant coefficient (0.65 and p-value <0.001). The higher the potential of a productive oil 

well, the higher the probability of drilling. Oil producers expect a higher production rate from wells with 

high reserves, and high-reserve oil wells are more likely to generate higher profits. The expected profit 

affects both the delay option and immediate investment values. However, the “immediate investment” value 

increases more than the “delay option,” causing a higher likelihood of drilling a high reserve oil well. We 

expect the drilling cost to have a negative coefficient as the cost decreases the project value. An increase in 

drilling cost is analogous to an increase in the option strike price, thereby reducing the delay option value. 

However, the immediate investment value decreases more than the delay option value.  

It is worth noting that most oil wells were drilled far enough from the expiration of the oil well 

leases; that is, the exercise of real investment options is more of a choice by oil producers to maximize 

expected payoffs than having to keep at least one oil well active to maintain a lease. In an alternative 

examination, we exclude oil wells that were drilled close to the expiration of oil leases (drilled within one 

 
§§§§§§ The hazard model will not use the months after the event happens (when the dependent variable is 1). Also, the 

hazard model will not use any unexercised options for estimation. These observations (after exercised and never 

exercised options) contain no useful information for estimating the hazard model. 
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year from the expiration of original leases) and the main conclusion that skewness and kurtosis matter to 

drilling choices still holds. ††††††† 

6.2 The Choice to Permanently Shutdown (plug) or Continue Producing 

We define the time of a “shutdown” (shutdown=1) as the last month of production for the oil well. 

Shutdown=0 until the final month of production, beginning with the first production date and ending the 

month before closing. Shutdown=0 when the well begins to produce. The well had one shutdown=1 in its 

last production month. We exclude the months when wells stop producing in the middle of their lives but 

then resume, as these constitute temporary shut-ins (mothballing). The cost of re-opening a permanently 

shutdown well is prohibitive, and as mentioned earlier, switching to mothball status would cause a shift 

from no periodic maintenance cost to a per-period cost, which would make no economic sense.  

(Insert Table 5 here.) 

Column (1) reports the 5. The results indicate that the price is negatively related to the probability 

of closing an oil well. We show that price is positively related to the likelihood of drilling, increasing the 

expected payoff from drilling an oil well. Such value increases are more for “immediate investment” than 

“delay option,” as the latter is discounted more by time. Similarly, when prices decrease, oil producers are 

likelier to close down oil wells because the decline in oil prices will make an operating oil well unprofitable. 

Thus, when the opposite occurs, oil producers are less likely to close their oil wells. Oil producers have two 

choices: the first is to shut down oil wells immediately, and the second is to postpone the shutdown plan. 

Both become less attractive as the oil price increases; however, the first choice is even less appealing to 

producers, as the increase in oil price affects the expected payoffs from the first choice more than the second. 

Thus, oil producers are more likely to postpone shutdowns when oil prices increase. We also find that the 

coefficient of volatility is negative, indicating that increased expected volatility leads to an increased value 

for the delay option and has a lower probability of selecting shut-in. When price volatility is high, there is 

a better chance that a price increase will make the shutdown plan unattractive. Therefore, producers tend to 

delay shutting wells down if price volatility increases the delay option value. The choice is negatively 

related to  volatility, and the empirical results suggest that volatility is negatively related to the probability 

of shutdown, consistent with the ROV predictions. In summary, the empirical results for price and volatility 

are consistent with the existing literature and predictions when prices are volatile and investment is 

irreversible..  

Skewness and kurtosis are positively related to the probability of oil-well shutdowns, consistent 

with the prediction of real options valuations. In Column (6), the coefficient of skewness is significant at 

 
††††††† Results available upon request. 
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the 1% level. This finding suggests that when price skewness increases (i.e., increases in the probability of 

positive price jumps), producers are more likely to shut down oil wells immediately. This finding seems 

counterintuitive at first. However, the put option value decreases, suggesting that waiting for the shutdown 

plan to proceed is not worth waiting. The expected payoff from the immediate shutdown does not change 

with skewness but is related to the expected price. This result is consistent with the immediate shutdown 

value being greater than the waiting value. To summarize, we find that extreme positive shocks accelerate 

a close-down plan and that outliers on both sides decrease the value of making such decisions immediately.  

It was also found that (oil well) depth was positively related to the shutdown. Deeper wells have 

higher operating costs than shallower wells; thus, they are more likely to become optimal for the shutdown. 

We include basin in the econometric model to show that the dummies are significant explanatory variables 

for investment decisions. We use last12 as a proxy for well productivity. If the oil well remains productive, 

the expected payoffs from future production will be higher than those from a less effective oil well. We 

show that last12, i.e., the well’s last 12-month production rate, is negatively associated with the propensity 

to close the well. The production rate of an oil well decays exponentially with time. Thus, even for the same 

well, profitability changes over time. A more productive newer well is more profitable for maintenance in 

the production state than a less effective older well.  

6.3 The Choice to Produce or Mothball 

Column (1) of Table 6 reports the panel probit estimation results in which the choice variable is 

defined as follows:  The dependent variable here is the oil well’s production status, and 𝑝𝑟𝑜𝑑 = 1 for 

“producing” and 𝑝𝑟𝑜𝑑 = 0  for “mothballing.” The estimated coefficient on Price is positive and 

significantly different from zero (0.437 and significant at 1%), as is the lagged production status, l.prod 

(0.302 significant at 1%). Note that the value of “immediate investment” and “delay option” increase with 

price. However, increases in output price have a more substantial impact on “immediate investment” than 

on the “delay option.” This conclusion is intuitive. The “delayed” cash flows are discounted, and price 

increases should have a smaller impact on the more discounted cash flows than on the less discounted ones. 

For a producing well, the value of the put option of “mothballing” the oil well decreases with increased 

output price, making it less attractive to shut in the wells, thus leading to the positive coefficient of price. 

An increase in price volatility increases the put option value. The fact that lagged production status and 

volatility affect choice is consistent with producers recognizing the presence of sunk costs and future 

uncertainty. 

(Insert Table 6 here.) 
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In column (2), the coefficient on “mothballing” lagged status and skewness is positive (0.045) and 

significant (with a p-value < 0.001). A higher skewness leads to the acceleration of immediate investment 

and a stronger propensity to re-open (a mothballed oil well). The interaction of “producing” lagged status 

and kurtosis has a negative and significant coefficient (-0.163 at 1%), and the coefficient of the interaction 

of “mothballing” lagged status and kurtosis is positive and significant (0.120 at 1%). Increases in kurtosis 

accelerate investment, suggesting that an increase in kurtosis reduces the value of the delay option and 

makes postponing investments less optimal. The results indicate that asymmetry and dispersion have 

significant impacts on investment propensity.  

The coefficient on age is negative and significant (-0.360 and p-value <0.001), indicating that older 

wells are less profitable, consistent with older wells being less productive and more costly to operate. Thus, 

the results for age are consistent for models that include and exclude higher-order moments in the price 

distribution. We find that the coefficient of depth is negative and significant. The estimated coefficient on 

the variable cumulative oil production cumulative oil production is positive and statistically significant. 

However, the estimated coefficient of the reserve variable is not significantly different from zero. However, 

the reserve becomes significant and positive in the unreported results, excluding basins, drilling types, and 

depth in the empirical model. The estimated coefficient of the lagged production status, l.prod, is positive 

and significant. This finding suggests that lagged production status is an essential determinant of production 

status.  

The empirical results revealed that tail risk significantly impacts oil firms’ investment decisions. 

Changes in skewness affect oil producers’ decisions to close, while changes in kurtosis lead to different 

likelihoods of closing an operating oil well. The results indicate that the marginal effect of kurtosis is as 

large as that of volatility. It is important to incorporate tail risks into decision models. The next section 

investigates the economic significance of tail risk for oil firms. 

6.4 The Impacts of Tail Risks versus Volatility 

6.4.1 Three-Way Sorting 

As Kellogg (2014) and Moel and Tufano (2002) indicated, the volatility of oil price changes 

significantly influences decisions regarding mine drilling and closing. It is imperative to ascertain the 

relative importance of tail risks compared to volatility in shaping these decisions. Hence, the central 

research question arises: To what extent do skewness and/or kurtosis affect real investment decisions 

relative to volatility? Alternatively, this question can be reformulated as follows. How do value-maximizing 

choices differ from the existing model that exclusively considers volatility as a measure of uncertainty? 
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Initially, we examine periods during which volatilities are approximately equivalent but with 

varying levels of tail risk. In other words, we summarize the percentage of oil producers opting to 

commence drilling for new or close operating wells when volatilities are nearly identical. Still, the skewness 

and/or kurtosis differ. Table 7 illustrates the percentage of oil wells drilled in months, in which volatilities 

are categorized into four distinct portfolios (portfolio 1, which is the lowest volatility, and Portfolio 4, which 

is the highest volatility). The oil wells within each volatility portfolio are divided into three sub-portfolios: 

those in months with skewness exceeding the 75th percentile, those with skewness below the 25th percentile, 

and those between. The oil wells are divided into three sub-portfolios within each skewness portfolio based 

on kurtosis. The drilling model data findings indicate that when skewness is held constant within the 

intermediate portfolio, the percentage of drilled oil wells tends to increase consistently as kurtosis increases 

across various volatility portfolios. However, when kurtosis remains in the intermediate portfolio, and we 

examine the sub-portfolios based on volatility and skewness, we observe that in the lowest volatility 

portfolios, the percentage of drilled wells increases with skewness. This trend holds for the highest volatility 

portfolios. However, for portfolios characterized by intermediate levels of volatility, the relationship 

exhibits non-monotonic behavior. By contrast, for the shutdown model, we do not discern any consistent 

monotonic relationship between volatility, skewness, and kurtosis. Statistics about production status 

indicate that approximately 89.74% of the month-well observations within a sample are associated with 

active production. When skewness was segregated into percentiles at the 25th and 75th levels, the average 

percentage of monthly wells engaged in production was 88.66% for skewness values below the 25th 

percentile and 90.39% for skewness values exceeding the 75th percentile. The 25th percentile of volatility 

is measured at 0.243, whereas the 75th percentile is registered at 0.376. In cases of low volatility, an increase 

in skewness corresponds to a higher likelihood of oil wells being in production status. 

(Insert Table 7 here.) 

6.4.2 Reversed Choices - The Importance of Tail Risks 

This subsection explores the possibility of oil firms reversing their investment decisions based on 

the impact of skewness and kurtosis on optimal choices. Specifically, it investigates when firms might 

change their production choices because models incorporating skewness and kurtosis could yield different 

outcomes than those considering only volatility as a source of price uncertainty. We estimate the likelihood 

of exercising an investment option using two different models: 1) an empirical model that predicts the 

likelihood of exercising a drilling option based on the volatility of price changes (the Simplified Model) 

and 2) an empirical model that predicts the likelihood using volatility, skewness, and kurtosis (the Complete 

Model). The median of exercised cases establishes a cutoff: probabilities at or above the median are 

predicted as “drilling,” while those below are predicted as “not drilling.” 
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First, we examine the choice of drilling by comparing the complete model - a model that 

incorporates the skewness and kurtosis of oil price changes, as in our main specification–and the simplified 

model, based on the main specification but without the variables for the skewness and kurtosis of oil price 

changes. We compared the predictions of the drilling choices of the two models (complete and simplified). 

We first ran a regression analysis of the complete model and predicted the hazard rate from the model’s 

estimates. The predicted hazard rates were summarized for the statistical distribution median (50th 

percentile value). When the predicted hazard rate is larger than the median, the oil well is predicted to be 

drilled; when the predicted hazard rate is lower than the median, we predict that the oil well will remain in-

drilled as an open option. The simplified model’s predicted hazard rate is also summarized for its median 

to predict the actions taken, and when its predicted hazard rate is greater than the median of the predicted 

hazard rate, the oil well is predicted to be drilled; if the rate is lower than the median, we predict that it is 

not drilled. According to the complete model, 73.28% of the sample was predicted to be drilled, and 72.80% 

was predicted to be drilled using the simplified model; 1.44% of samples have different predictions between 

the two models. We find that the percentage of different predictions (well-month observations) is about 2-

5% before 2015 but is close to 0% between 2015 and 2018.  

(Insert Table 8 here.) 

The shutdown choice is predicted similarly: when the Cox proportional hazard model predicts a 

greater-than-median hazard rate, the oil well is predicted to be closed; otherwise, it is predicted to remain 

in operation. In the predicted shutdown choices, 31.55% were predicted to be closed based on the complete 

model, and 7.71% were predicted to be closed based on the simplified model. There are 23.85% predictions 

in which the simplified model (with only the volatility variable to measure uncertainty) predicts remaining 

operational, but the complete model (with skewness and kurtosis) is predicted to be closed. Figure 2 shows 

the percentages of different predictions between the complete and simplified models, calculated as the 

proportion of well-month observations with different predicted actions (closed vs. stay-operating). 

According to this figure, the percentage of different predictions increased in the 2010s. From 2016 to 2019, 

the percentage was approximately 50%.  

(Insert Figure 2 here.) 

The choices between production and mothballing are fitted using a different statistical model in our 

main specification: the panel probit model. Thus, choices were predicted using a panel probit model. The 

choices are predicted based on two alternative specifications: complete and simplified. In the simplified 

specification, the skewness and kurtosis variables of the oil price changes were not included. The complete 

model predicts 45.13% of the well-month observations to be produced, and the simplified model predicts a 

production of 50.02 %. A 4.89% sample is predicted to be produced by the simplified model but predicted 
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to be mothballed by the complete model. Figure 2 shows the trend in the percentage of monthly observations 

for different predictions. The percentage of different predictions between the complete and simplified 

models gradually increased over time. This figure increased by approximately 5.5% in 2019. 

6.4.3 Potential Value Loss When Ignoring Tail Risks 

The following sections estimate the possible loss of value for oil producers. The potential value 

loss was estimated following the methods of Décaire et al. (2020) to estimate the oil well project value. We 

follow similar assumptions as Décaire et al. (2020) but alter the specifications for oil drilling investment 

decisions. The potential loss estimation by Décaire et al. (2010) was for natural gas wells. Following 

Décaire et al. (2020) in estimating asset value for natural gas wells,‡‡‡‡‡‡‡ the net profit per barrel is 

calculated as,  𝑃[(1 − 𝜑 − 𝜌) − 𝜏(1 − 𝜑 − 𝜌 − 𝜃)] , where 𝜑  is operating costs, 𝜌  is royalty rates, 𝜏  is 

effective tax rate, and 𝜃 is depreciation rate. Value of an oil well is calculated as 𝑉 = 𝐸[𝑄]
𝛱

𝜇+𝜔
, where 𝜇 

is discount rate, and 𝜔 is depletion rate. 𝐸[𝑄] is estimated as the predicted production rate obtained from a 

regression of the annual production rate of the first infill well on the annual production rate of the second 

well. The coefficient was then used to estimate the production rates of the infill wells in the sample. The 

drilling cost was the average drilling cost of the sample. Here are the parameters of inputs:𝜑 = 12.3%, 𝜌 = 

28.6%, 𝜏 = 34%, 𝜃 = 40%, 𝜇 = 10%, and 𝜔 = 15%.§§§§§§§   

The average well value was estimated to be approximately $2,913,058 per year. Dividing this value 

by 12 estimates a $242,754 monthly value. Referring to our estimated difference in the percentage of 

different predictions from the complete and simplified models (assuming a 2.5% difference), oil producers 

will obtain a $6,068 value difference if not using the complete model that incorporates tail risks per well 

per month. The sample’s average number of oil well options per operator is 145; on average, each oil 

operator is holding 145 open oil well options per month. This counts towards $879,860 possible value 

differences per month and $10,558,320 value differences per year. The average annual net income of oil 

firms in our sample is $1,002,000,000. This suggests that 1.05% of annual earnings could have changed if 

operators simply adopted a decision model incorporating tail risk into oil price changes. 

6.5 Physical Moments and Even Higher-Order Moments 

 
‡‡‡‡‡‡‡ Please see p.36 4.3.1 Estimating the underlying asset value of Décaire et al. (2020). 
§§§§§§§  Sources of input parameters: 

𝜑: https://www.investopedia.com/ask/answers/071615/what-are-average-operating-expenses-oil-and-gas-sector.asp 

𝜌: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/dttl-er-US-oilandgas-guide.pdf 

𝜏: https://www.api.org/-/media/files/policy/taxes/dm2018-086_api_fair_share_onepager_fin3.pdf 

𝜃: https://www.plantemoran.com/explore-our-thinking/insight/2022/08/the-tcja-100-percent-bonus-depreciation-starts-to-phase-

out-after-2022 

𝜇: Decaire et al. (2020). 

𝜔: esimated from 
𝑃𝑟𝑜𝑑𝑡=2

𝑃𝑟𝑜𝑑𝑡=1
= 𝑒−𝑤. 
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6.5.1 Physical Price Distributions  

Notably, most oil producers use physical oil prices as price benchmarks rather than futures (option-

implied) prices or distribution moments. First, most oil producers (70% in our sample) hedge some of their 

crude oil positions in the case of high uncertainty in oil markets; from drilling to the production of crude 

oil, oil price uncertainty cannot be fully reduced but can be alleviated by entering financial contracts. 

Second, some small oil producers find it too costly to enter these financial contracts and may use physical 

prices as their benchmarks. Thus, we examined the moments of physical price changes. The volatility, 

skewness, and kurtosis of the physical price changes are estimated from the physical price changes (1-st 

futures WTI crude oil price changes) and are calculated as the standard deviation, skewness, and kurtosis 

of price changes on an annual rolling basis. The spot prices from six months before to six months after the 

dates were used to compute the price changes’ standard deviation, skewness, and kurtosis. This computation 

follows the methodology for computing the term structure of volatility outlined in Kellogg (2014). Then, 

the daily moments were averaged monthly to measure the distribution moments of the physical oil price 

changes. ********  According to the empirical results, physical price change distributions have similar 

coefficient signs and significance to the BKM risk-neutral moments estimated from options and futures 

prices.†††††††† 

(Insert Table 9 here.) 

6.5.2 Interaction Terms - Nonlinear Relationship 

It is plausible to assert that the influence of kurtosis may be contingent on the magnitude of 

skewness, as these effects exhibit the potential for mutual interaction. For instance, in the event of positive 

skewness, an increase in kurtosis could enhance the probability of encountering favorable developments in 

the future. Consequently, in this subsection, we conduct an empirical analysis incorporating an interaction 

term encompassing skewness and kurtosis into our regression models. 

The outcomes derived from the production model substantiate that, in cases where both skewness 

and kurtosis are higher, oil producers tend to choose to produce over mothballing strategies. Importantly, 

the statistical significance of the interaction term is manifested in both the mothballing and production 

statuses. Nevertheless, when we considered the drilling model, the interaction term, although not 

statistically significant, exhibited a positive coefficient. Turning to the shutdown model, the interaction 

 
******** For example, the 1-st WTI crude oil futures prices from 180 days before Jan 1, 2015 to 180 days after Jan 1, 2015 are 

calculated to their daily price changes; then the daily price changes in the 360 days are summarized its distribution standard 

deviation, skewness, and kurtosis; the statistical summaries are used as Jan 1, 2015 physical price changes’ volatility, skewness, 

and kurtosis. Each trading date of Jan 2015 are calculated volatility, skewness, and kurtosis in a similar way, then the daily moments 

are simply averaged to their monthly estimates.  
†††††††† In an unreported robustness test, we use 18-month (one-month) physical moments to replace the risk-neutral moments. The 

results are similar to these using the concurrent physical moments. 
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term had a noteworthy negative coefficient that was statistically significant. This empirical evidence implies 

that in situations in which both distribution moments experience an increase, oil producers tend to opt for 

the deferral of shutdown decisions. 

(Insert Table 10 here.) 

6.5.3 Even-Higher-Order Dimensions and Asymmetries in Price Distribution 

Because oil price distributions may not follow a normal distribution and exhibit significant 

skewness and kurtosis in our sample, it is important to suggest whether oil price changes exhibit even 

higher-order moments in the distribution. Next, we empirically examine the asymmetry in the price change 

distribution on whether the oil producer responds only to changes in the odd-order central moments 

(skewness and fifth-order moments). Two alternative hypotheses examine whether oil producers respond 

only to moments describing the asymmetry in the oil price change distribution: 

H0: Oil investment decisions only respond to odd-order central moment changes in oil price change 

distribution.  

H1: Oil investment decisions are explained by changes in odd-or and even-order central moments. 

The rationale under this null hypothesis is that oil producers do not maximize expected payoffs by 

choosing a choice with a higher payoff but simply dislike the asymmetry in the oil price change distribution.  

If this null hypothesis is supported by the empirical results for oil investment choices and oil price change 

distribution moment changes, the reason could be explained by the oil producers’ preference over positive 

skewness (and over positive/negative even higher-order central moments). 

Since Jarrow and Rudd (1982), Corrado and Su (1986), and Brown and Robinson (2002) developed 

the skewness- and kurtosis-adjusted option pricing models, higher-order moments (order >5) have not yet 

been derived. Thus, we respond to an estimation of the higher-order moments on the realized distribution 

of the central moments. This estimation uses a 360-day rolling window to estimate the realized distribution 

of the central moments for oil price changes. The p-th order central moments are calculated as 𝑅𝑝,𝑡 =

∑ (∆𝑃𝑟𝑖𝑐𝑒−∆𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑝𝑁
𝑛=1

𝑛−1
, where n=t-180 to t+180. The empirical results suggest that all moments matter, not 

just odd- or even-order moments, in oil drilling decisions. 

(Insert Table 11 here.) 

6.6 The Impact of Financial Constraints on Oil Investments and Uncertainty 

6.6.1 Hedging  
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As previously mentioned, many oil producers hedge their positions in crude oil. In this subsection, 

we examine whether hedging choices influence oil producers’ responses to changes in tail risk. The hedging 

ratio of oil production is calculated as the ratio of hedging derivatives to total oil production over a fiscal 

year cycle. The derivative positions for hedging and annual total oil production were manually collected 

from 10-k. The average hedging ratio was 44.97%, and the ratio was highly skewed, with a median of 30.10% 

and a standard deviation of 32.90%. Approximately 38% of the firm-year sample has a hedging ratio of 

0 %. Table 12 suggests that the interactions between the hedging ratio and the distribution moments 

(volatility, skewness, and kurtosis) are insignificant at the 5% level for drilling decisions. ‡‡‡‡‡‡‡‡ We find 

significant impacts of hedging ratios on the producing status choices between producing and mothballing 

in the production model sample. When we split our sample into hedgers and non-hedgers based on whether 

the firms have nonzero hedging positions, we found no significant differences between the two groups. 

Thus far, the results show that hedging strategies do not significantly change firms’ choices when facing 

tail risk. 

(Insert Table 12 here.) 

6.6.2 Leverage  

Next, exploring whether financially constrained oil firms are more likely to respond to changes in 

tail risk-skewness and kurtosis in oil price changes is important. If oil producers are concerned about the 

potential value loss from making decisions that are not value-maximizing, they should be particularly 

cautious when their financial conditions are more tangential. The measure of financial constraints is the 

leverage of the oil well operator§§§§§§§§. Firms closer to bankruptcy or insolvency are more likely to be 

concerned about potential value losses. The rationale is that oil producers should be more cautious about 

their investment decisions. Financial constraints are proxied by operator leverage. The data used to calculate 

leverage were collected from Compustat through the WRDS,********* show that the interactions of volatility 

are significant and negative, suggesting that leveraged firms are more likely to delay drilling plans when 

 
‡‡‡‡‡‡‡‡ Following Doshi, et a. (2018) and Adam, et cl. (2017), the endogeneity issue with leverage ratio may be resolved 

with the Inverse Mills Ratio (and capital investment), which is predicted from the serial correlation coefficient in taxable 

incomes, the instrument variable for hedging ratio. In an unreported robustness result, we split our sample into two groups: 

hedgers and non-hedgers and run the main model separately for each subgroup for drilling decisions. Non-hedgers do not respond 

to changes in skewness and kurtosis of oil price changes but respond to changes in predicted hedging ratios (coefficient of 

Inverse Mills Ratio is negative and significant at 1%); hedgers respond to changes in skewness negatively but the coefficient for 

the Inverse Mills Ratio is not significant.   

§§§§§§§§ They are those reported as the main operator of the oil wells by Enverus. 
********* Leverage is calculated as short-term debt (dlcq) plus long term debt (dlttq) divided by total equity (seqq). All items on 

quarterly basis.  



26 
 

uncertainty increases. However, more leveraged oil producers are reluctant to shut down operating oil wells 

when the skewness changes.  

(Insert Table 13 here.) 

6.7 Term Structure of Oil Prices: Contango and Backwardation 

The shape of the term structure of oil prices may affect oil producers’ choices. For example, if oil 

prices are expected to increase, oil producers may become more optimistic about oil drilling projects. 

Following the measure in Miffre and Rallis (2007) and the term in Kolb (1992), we use roll-return (R) to 

measure the shape of the term structure of oil prices. R is defined as Rt = 𝑃𝑁𝑒𝑎𝑟𝑒𝑠𝑡,𝑡/𝑃𝐷𝑖𝑠𝑡𝑎𝑛𝑡,𝑡 − 1. Thus, 

a higher R suggests higher oil prices in nearer terms and lower oil prices in more distant terms. As R 

increases, the term structure becomes more of a contango than a backwardation. The regressions of models, 

including R suggest that when facing a more contango term structure in oil prices, oil producers are more 

likely to choose to delay drilling and shutdown plans. A dummy variable, Contango = 1 for negative R, 

shows a positive but insignificant coefficient. The regressions of production status on variables and, 

including the term structure measures, show that oil producers are less likely to resume production, and the 

dummy variable shows a positive and significant coefficient, suggesting a significant impact of the shape 

of the term structure of oil prices on investment choices for oil producers.  

(Insert Table 15 here.) 

6.8 Robustness 

6.8.1 Unobserved Heterogeneity in the Production/Temporary Shut-in (Mothball) Model 

We investigate whether unobserved heterogeneity across wells affects the main results presented 

in Tables 4-6. There may exist substantial unobserved heterogeneous differences among oil wells that 

determine production statuses. Determinants other than depth, age, drilling type, or basin may affect the 

profitability of the oil wells, such as operating costs. Using a robust model controlling for unobserved 

heterogeneity, we implement the simple initial condition solution proposed by Wooldridge (2005) to solve 

the unobserved heterogeneity issue in random-effects panel probit model. In addition to the initial model’s 

specification, we include add the lagged values (initial conditions) of the dependent variable, cumulative 

oil production, and age’s initial values, and averages of cumulative oil production and age to control 

unobserved heterogeneity among wells. We find that the empirical results rarely change.  

6.8.2 The Influence of Nearby Drilling Activity  

Décaire et al. (2020) find that the propensity for oil producers to decide whether to drill a new oil 

well is influenced by the drilling activity of neighbor producers, suggesting that an information spillover 
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effect influences producers decisions to drill.  We construct measures of proximity in the following manner: 

using the arrangement of sections within a lease,††††††††† we can identify the “neighbors” of an oil well with 

the section numbers. A section can have up to eight neighbors. For instance, section 16 has neighbor 

sections 8, 9, 10, 15, 17, 20, 21, and 22. However, some sections have fewer neighbors within the lease. 

For instance, section 1 only has neighbor sections 2, 11, and 12. A well lease can be identified by its range 

and township values which, along with section numbers, are available from the Enverus’ database. After 

identifying each well’s neighbors, we count the number of drilled options among these neighbors. These 

are the number of exercised options around the well. This number serves as a source of spillover information, 

as it indicates the productivity of the oil wells and reserve underground. We am able to split between the 

oil well’s firm’s own drilled neighboring wells and drilled wells from other firms. Both numbers are 

included in the empirical model to examine the effect of proximity options exercises on oil well drilling 

decisions. Including these measures of proximity in the base drilling model, we find that our basic results 

regarding the relation between the choice to drill, volatility, skewness and kurtosis are unchanged.  However, 

we do find that proximity does matter in our sample, that the probability of drilling is positively related to 

proximity.   

7. Summary and Conclusions 

By focusing on production histories for all oil wells domiciled in California, North Dakota, 

Pennsylvania, Texas, and Oklahoma from 2010 to 2019 and relating the changes in producing status to oil 

price moments (volatility, skewness, and kurtosis), we show that oil producers account for higher order oil 

price moments consistent with the predictions of value maximizing behavior in the presence of real options 

(price change uncertainty and sunk costs). The choices to produce or temporarily shut down, are determined 

by expected skewness, kurtosis and volatility of the price change distribution in addition to other well-

specific characteristics.  The choice to continue producing or permanently shut down are determined by 

expected skewness and volatility.  The choice to drill or wait to drill is determined however only by 

expected kurtosis and volatility.  The evidence overall indicates that sunk costs matter in the presence of 

future price uncertainty. The choices of the oil producers in the sample are consistent with value maximizing 

behavior in the presence of real options, however not all choices are influenced by skewness and kurtosis 

despite the fact that in theory the value of the real options involved are influenced by those parameters of 

the price change distribution.  

 
††††††††† An example of the map of the arrangements of section within a well lease can be accessed: 

https://www.geomore.com/locating-wells/. 
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TABLE 1. Coefficient Sign Predictions of Choice Determinants for Choice Models 

Table 1. shows the predicted relationships between the empirical model variables as discussed in section 3 and the 

probability of oil producers choosing “producing” (“drilling” or “shutdown”) status at t according to the developed 

economic and empirical models in 4.3, 4.4, and 4.5. These relationships are indicated by the modified Black-Scholes 

option pricing model and Real Options Valuation as discussed in section 3. The first column shows the names of the 

variables in these empirical models (as in equations (1), (2), and (3)). Columns 3-5 show the predicted relationships 

between the variables and the probability of choosing “producing” as in the production model, and the probability to 

choose “drilling” in the drilling model, as well as the probability to choose to close the oil well in the shutdown model. 

In particular, the relationship between the probability and price moments for the production model depends on lagged 

status, so column 2 gives the lagged status of oil wells. In the second column, lagged producing status is given as signs 

of predicted coefficients depending on lagged status.  

Model Production Drilling Shutdown 

Variable 

Lagged 

Production 

State at t-1 

Probability of  

Selecting 

“Producing” State at 

t 

Probability of 

Selecting “Drilling” 

at t 

Probability of Selecting 

“Shutdown” at t 

Lagged Status(=

“Producing")  
Positive   

Price 
 

Positive Positive Negative 

Volatility 
Producing Positive 

Negative Negative 
Mothballing Negative 

Skewness 
Producing Positive 

Positive Positive 
Mothballing Negative 

Kurtosis 
Producing 

Positive or Negative Positive or Negative Positive or Negative 
Mothballing 

Horizontal Drilling  Positive or Negative Positive or Negative Positive or Negative 

Directional Drilling 
 

Positive or Negative Positive or Negative Positive or Negative 

Undetermined Drilling  Positive or Negative Positive or Negative Positive or Negative 

Basins 
 

Positive or Negative Positive or Negative Positive or Negative 

Age 
 

Negative   

Depth 
 

Negative Negative Positive 

Productivity  
 

Positive Positive Negative 

Total Costs 
 

Positive Negative Negative 
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TABLE 2.  Life Cycle of An Oil Well 

Table 2. describes the six stages of the life cycle of an oil well – 1. Seismic survey; 2. Drilling; 3. Producing; 4. 

Mothballing, 5, Producing (Resuming), and 6. Shutdown. The second column describes the definition of each stage 

and the last column explains the situations in which each stage would be chosen. 

Oil well life cycle stage Define When to choose the stage 

1. Seismic Survey 
Tests of oil well expected total 

production and operating cost 

Oil producers to test oil reserve 

and reservoir depth 

2. Drilling 

Use rigs to open a new well and 

stabilize wellbore with cement and 

steel 

Reservoir is detected; maintaining 

leasing a field 

3. Producing  
Pump up crude oil products and sell 

at market (future) prices 

Expected revenue from selling is 

higher than operating cost; well is 

not exhausted or dry 

4. Mothballing 

Temporarily stop production of an 

oil well but maintain the option to 

re-open it later 

Expected revenue is lower than 

operating cost but may becomes 

greater than cost in the future 

5. Producing (Resuming) 
Resume production after 

mothballing when prices are better 

Resume production of oil well if 

expected revenue becomes greater 

than costs 

6. Shutdown 
Permanently close a well by 

plugging in wellhead with cement 

Well is exhausted; too costly to 

maintain an active oil well 
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Table 3. Statistical Summary 

Data consists of oil wells in California, Pennsylvania, North Dakota, Oklahoma, and Texas. Dates range monthly from Jan 2010 to Jun 2019. “Prod”=1 for producing 

well-month observations and “Prod”=0 for mothballing. Age is the number of months in production from the completion date. Cum. oil production indicates the 

cumulative oil production measured in bbl. Price is the one-month maturity WTI futures prices (scaled by 100 and deflated by CPI). Volatility, skewness, and 

kurtosis are BKM’s (Bakshi et al. (2003)) option-implied risk-neutral central moments computed from WTI crude oil futures prices and option prices. Reserve is 

the total tested oil potential in bbl. Depth is in tens of thousands of feet. Drilling type dummies include directional, horizontal, vertical, and undetermined drilling 

types. Last12 is the oil well’s last 12-months’ production rate and it is only for the shutdown dataset. Exer(drilling) (exer(shutdown)) is the drilling varible in the 

drilling(shutdown) dataset and it is equal to one for spud (shutdown) month. The variables age, cum. oil production, reserve, depth, and last12 are taken natural 

logarithm. The last panel summarizes the dummies for the wellheads’ located basins.  
Variable Obs Mean Std. dev. Min Max  Basins percent (%) 

controls  production shutdown drilling 

age 53,562,491 5.165 1.173 0.000 6.945  CA coast 20.67% CA coast 2.71 CA coast 2.71 

cumulative oil  49,811,453 10.277 1.861 0.000 17.649  CA offshore 0.56 CA offshore 0.01 CA offshore 0.01 

reserve 11,986,651 3.892 1.667 -4.605 9.736  other-California 18.35 other-California 0.01 other-California 0.01 

depth 47,080,572 8.220 0.780 2.996 10.127  Sacramento 1.69 Sacramento 0.00 Sacramento 0.00 

last12 46,437,694 5.566 2.076 0.000 13.857  San Joaquin 11.35 San Joaquin 3.69 San Joaquin 3.69 

one-month price and moments  Ozark uplift 0.02 Anadarko 14.39 Anadarko 14.39 

price_deflated 53,562,491 0.587 0.285 0.151 1.444  eastern shelf 4.36 Appalachian 8.00 Appalachian 8.00 

kurtosis 53,562,491 1.155 1.090 -0.289 4.700  Forth Worth 11.47 Arkoma 1.09 Arkoma 1.09 

skewness 53,562,491 -0.157 0.398 -0.993 0.609  gulf coast central 5.75 Burgos-Rio Grande 0.00 Burgos-Rio Grande 0.00 

volatility 53,562,491 0.210 0.058 0.100 0.401  gulf coast west 4.61 central basin  13.85 central basin  13.85 

18-month price and moments  Hollis-Hardeman 0.44 Cherokee platform 9.08 Cherokee platform 9.08 

price_deflated 48,374,905 0.579 0.281 0.189 1.454  Kerr 2.17 Delaware 2.33 Delaware 2.33 

kurtosis 50,144,399 0.363 0.240 0.008 1.212  Llano uplift 0.03 east Texas 1.63 east Texas 1.63 

skewness 50,144,399 -0.285 0.197 -0.876 0.406  midland 15.39 east Texas coastal 0.00 east Texas coastal 0.00 

volatility 50,144,399 0.239 0.068 0.109 0.569  northwest shelf 2.82 eastern shelf 4.79 eastern shelf 4.79 

well status dummy  Pala Duro 0.30 Fort Worth 7.38 Fort Worth 7.38 

exer(drilling) 5,516,130 0.394 0.489 0.000 1.000  Val Verde  0.02 gulf coast central 4.78 gulf coast central 4.78 

exer(shutdown) 50,144,399 0.002 0.048 0.000 1.000    gulf coast west 5.25 gulf coast west 5.25 

prod 53,561,751 0.917 0.275 0.000 1.000    Hollis-Hardeman 0.42 Hollis-Hardeman 0.42 

percent (%)    Kerr 0.72 Kerr 0.44 

drilling types    Llano uplift 0.04 Llano uplift 0.04 

directional 1,729,569 3.42%       midland 16.79 midland 16.79 

horizontal 2,423,340 4.80       northwest shelf 2.60 northwest shelf 2.60 

undetermined 33,018,806 65.38       other-Texas 0.00 other-Texas 0.00 

vertical 13,329,828 26.39       Ozark uplift 0.04 Ozark uplift 0.04 

         Palo Duro 0.35 Palo Duro 0.35 

         Val Verde 0.05 Val Verde 0.05 
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Table 4. The Choice to Drill or Defer 

Table 4. panels (1)-(2) show results of the regression of the real option exercise on price, central moments, and controls 

using the Cox hazard model. The regressions examine the impacts of the determinants on exercise of real options of 

oil well entry. The regression equation is Equation (2). The dependent variable “exer” dummy=1 for “drilling” months 

and =0 for the months before exercising of the options. The option-implied risk-neutral central moments (volatility, 

skewness, and kurtosis) are computed using BKM (2003). Well depth is measured in tens of thousands of feet. 

“horizontal drilling” and “directional drilling” are drilling types. “Arkoma”, “east Texas”, … are basin dummies. 

Drilling costs, cost_def, are sums of drilling, completion, tie-in, and transportation costs and are deflated. The variables, 

depth, cost_def, and reserve are taken natural logarithms. *, **, and *** indicate significance at 10%, 5%, and 1%, 

respectively.  

  (1) (2) 

*drilling=1 for spud month and =0 for prior months 

dependent 

variable: 

drilling 

coefficient 
robust 

SE 
p coefficient robust SE p 

price 2.015       0.074       0.000       *** 1.827       0.104 0.000       *** 

volatility -4.098       0.194       0.000       *** -4.272       0.199 0.000       *** 

skewness                       -0.085 0.074       0.253        

kurtosis             0.233 0.084       0.005 ***   

depth 0.256       0.049       0.000       *** 0.253       0.050 0.000       *** 

cost_def -0.564       0.037       0.000       *** -0.562       0.037 0.000       *** 

reserve 0.165       0.011       0.000       *** 0.165       0.011 0.000       *** 

horizontal drilling 0.327       0.136       0.016       ** 0.323       0.136 0.017       ** 

vertical drilling 0.263       0.135       0.052       * 0.262       0.262 0.053       * 

Basins 

Burgos-Rio Grande -41.836       1.004       0.000       *** -41.835       1.004 0.000       *** 

Central basin platform 0.658       0.055       0.000       *** 0.660       0.055 0.000       *** 

Delaware 0.711       0.046 0.000       *** 0.710       0.046 0.000       *** 

East Texas  -0.401       0.130 0.002       *** -0.401       0.130 0.002       *** 

East Texas coastal -42.227       0.766 0.000             *** -42.231       0.765 0.000       *** 

eastern shelf -0.156       0.085 0.088       * -0.145       0.085 0.088       * 

Fort Worth -0.016       0.058 0.780        -0.017       0.058 0.770        

gulf coast central -0.325       0.061 0.000       *** -0.323       0.061 0.000       *** 

gulf coast west 0.189       0.040 0.000       *** 0.186       0.040 0.000       *** 

Hollis-Hardeman 0.188       0.155 0.446        0.119       0.156 0.443        

Kerr 0.107       0.234 0.647        0.108       0.234 0.644        

Llano uplift 0.114       1.062 0.914        0.108       1.061 0.919        

midland 0.745 0.038 0.000 *** 0.747       0.038 0.000 *** 

northwest shelf -0.199       0.227 0.380        -0.197       0.227 0.385        

Palo Duro 0.098       0.263 0.708        0.098       0.263 0.710        

Val Verde 0.827       0.450 0.066       * 0.833       0.447 0.063        

Arkoma -0.480       0.479 0.316        -0.476 0.479 0.320        

Cherokee platform -0.485 0.083 0.000 *** -0.484 0.083 0.000 *** 

obs 1,080,596 1,080,596 

# of wells 27,152 27,152 

log likelihood -85,863.227       -85,854.493 
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Table 5. The Choice to Shutdown or Continue Producing 

Table 5. panels (1)-(2) show results of the regression of the real option exercise on price, central moments, and controls using the 

Cox hazard model. The regressions examine the impacts of the determinants on exercise of real options of oil well exits. The 

regression equation is Equation (3). The dependent variable “shutdown” dummy=1 for “shutdown” months and =0 for the months 

before exercising of the options. The option-implied risk-neutral central moments (volatility, skewness, and kurtosis) are computed 

using BKM (2003). Well depth is measured in tens of thousands of feet and taken natural logarithm. “horizontal drilling” and 

“directional drilling” are drilling types. “Arkoma”, “east Texas”, … are basin dummies. Proxy for shutdown costs, cost_def, are 

sums of drilling, completion, tie-in, and transportation costs and are deflated (drilling costs and shutdown costs are positively 

correlated). The variable last12 is the well’s lastest 12-month production rate in bbl. The variables cost_def and last12 are taken 

natural logarithms. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively.  

  (1) (2) 

*shutdown=1 for shutdown month and =0 for prior months 

dependent variable: shutdown 
coefficient 

robust 

SE p coefficient robust SE p 

price -4.027           0.082 0.000           *** -5.148           0.123 0.000 *** 

volatility -6.139           0.267 0.000           *** -6.397           0.253 0.000 *** 

skewness                         1.373 0.102           0.000 *** 

kurtosis                         1.459 0.097           0.000 *** 

depth 0.250           0.039 0.000           *** 0.247           0.039 0.000 *** 

cost_def -0.412           0.023 0.000           *** -0.406           0.023 0.000 *** 

last12 -0.124           0.010 0.000           *** -0.125           0.010 0.000 *** 

horizontal drilling -0.102           0.085 0.229            -0.115           0.084 0.172            

vertical drilling -0.117           0.068 0.088           * -0.117           0.068 0.087           * 

Basins 

other-California -0.619           0.947 0.513            -0.631           0.948 0.506            

San Joaquin 0.381           0.078 0.000           *** 0.378           0.078 0.000           *** 

Anadarko 0.360           0.092 0.000           *** 0.352           0.092 0.000          *** 

Appalachian -0.557           0.168 0.001           *** -0.567           0.168 0.001           *** 

Arkoma 0.365           0.244 0.134            0.357           0.243 0.143            

Burgos-Rio Grande 6.017           0.188 0.000           *** 5.983           0.187 0.000           *** 

central basin platform -0.545           0.103 0.000           *** -0.547           0.102 0.000           *** 

Cherokee platform 0.707           0.010 0.000           *** 0.701           0.101 0.000           *** 

Delaware 0.092           0.102 0.369            0.084           0.102 0.411            

east Texas -0.393           0.205 0.056           * -0.387           0.204 0.057           * 

east Texas coastal 4.615           0.419 0.000           *** 4.564           0.411 0.000           *** 

eastern shelf -0.353 0.137 0.010 ** -0.357 0.137 0.009 *** 

Forth Worth -0.081 0.100 0.415  -0.088 0.099 0.377  

gulf coast central 0.009 0.133 0.946  0.008 0.132 0.952  

gulf coast west -0.161 0.103 0.117  -0.161 0.102 0.115  

Hollis-Hardeman -0.322 0.148 0.030 ** -0.327 0.148 0.027 ** 

Kerr -1.574 0.270 0.000 *** -1.582 0.270 0.000 *** 

Llano uplift -0.625 0.244 0.010 ** -0.625 0.247 0.012 ** 

midland -0.212 0.091 0.021 ** -0.221 0.091 0.016 ** 

northwest shelf -0.848 0.178 0.000 *** -0.843 0.178 0.000 *** 

other-Texas -35.092 - -  -35.106 - -  

Palo Duro 0.560 0.246 0.023 ** 0.552 0.245 0.024 ** 

Val Verde 0.510 0.526 0.332  0.514 0.525 0.328  

obs           9,037,487      9,037,487 

# of wells           126,890 126,890 

log likelihood           -193,846.06 -193,589.24 
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Table 6.  The Choice to Produce or Mothball 

Table 6. estimation results of producing status on price, central moments, and controls using the random-

effects panel probit model. The regressions examine the impacts of the determinants on exercise of real 

options of oil well production. The model specification in Equation (1). The dependent variable, prod, =1 for 

“producing” and =0 for “mothballing”. L.prod =1: lagged producing status is “producing” and =0: lagged 

producing status is “mothballing”. The option-implied risk-neutral central moments (volatility, skewness, 

and kurtosis) are computed using BKM (2003). Well depth is measured in tens of thousands of feet, and well 

age is measured in months. “horizontal drilling” and “vertical drilling” are drilling types and “directional 

drilling” is the benchmark. “Ardmore”, “Delaware”, … are basin dummies. The variables, age, depth, reserve, 

and cumulative oil production are taken natural logarithms. The reported ρ is the proportion of panel-level 

variance in the total variance of dependent variable. *, **, and *** indicate significance at 10%, 5%, and 1%, 

respectively.  

  (1) (2) 

*prod=1 for producing and prod=0 for mothballing 

dependent variable: prod coefficient robust SE p coefficient robust SE p 

l.prod 0.302  0.021  0.000   *** 8.510  0.522  0.000 *** 

price 0.437  0.022  0.000   *** 0.451  0.023  0.000 *** 

{l.prod=0}×vol 0.460  0.041  0.000   *** 0.237  0.055  0.000 *** 

{l.prod=1}×vol 0.577  0.034  0.000   *** 0.973  0.044  0.000 *** 

{l.prod=0}×skewness         0.045  0.012  0.000 *** 

{l.prod=1}×skewness         0.065  0.012  0.000 *** 

{l.prod=0}×kurtosis         0.120  0.012  0.000 *** 

{l.prod=1}×kurtosis         -0.163  0.012  0.000 *** 

age -0.346  0.012  0.000  *** -0.350  0.012  0.000 *** 

depth -1.360  0.036  0.000  *** -1.363  0.036  0.000 *** 

reserve -0.015  0.010  0.106    -0.016  -0.016  0.096  * 

cumulative oil production 0.746  0.012  0.000  *** 0.747  0.747  0.000 *** 

horizontal drilling 0.371  0.062  0.000  *** 0.362  0.362  0.000 *** 

vertical drilling -0.640  0.065  0.000  *** -0.635  -0.635  0.000 *** 

undetermined 1.284  0.067  0.000  *** 1.279  1.279  0.000 *** 

Basins 

CA offshore 1.204 0.106 0.000   *** 1.206 0.106 0.000 *** 

other-California 0.936 0.037 0.000   *** 0.935 0.037 0.000 *** 

Sacramento 1.040 0.046 0.000   *** 1.039 0.046 0.000 *** 

San Joaquin 1.261 0.103 0.000   *** 1.262 0.103 0.000 *** 

eastern shelf 1.238 0.115 0.000   *** 1.237 0.115 0.000 *** 

Forth Worth 0.503 0.068 0.000   *** 0.504 0.068 0.000 *** 

gulf coast central 1.056 0.098 0.000   *** 1.053 0.098 0.000 *** 

gulf coast west 1.623 0.045 0.000   *** 1.622 0.045 0.000 *** 

Hollis-Hardeman 1.362 0.164 0.000   *** 1.362 0.164 0.000 *** 

Kerr 0.613 0.169 0.000   *** 0.605 0.169 0.000 *** 

Llano uplift 0.666 0.457 0.145    0.666 0.455 0.143  

midland 1.772 0.042 0.000   *** 1.771 0.042 0.000 *** 

northwest shelf 1.256 0.178 0.000   *** 1.258 0.178 0.000 *** 

Palo Duro 1.646 0.271 0.000   *** 1.645 0.270 0.000 *** 

Val Verde -0.023 0.366 0.000   *** -0.025 0.366 0.946  

constant 6.747  0.347  0.000   *** 2.817  0.452  0.000   *** 

obs  7,829,827  7,829,827 

# of wells  124,652  124,652 

log likelihood  -731,463.77  -730,965.92 
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Table 7. Percentages of Well Statuses Triple-Sorted by Volatility, Skewness, and Kurtosis 

Table 7 shows the statistical summary of the average percentage of oil wells in the status of drilling, shutdown, 

or producing, sorted by volatility, skewness, and kurtosis. The volatility of oil price changes is sorted into 

four portfolios: below 25th percentile of time-series, 25-50th percentile, 50-75th percentile, and above 75th. 
Within each volatility portfolio, we sort the percentile into nine subportfolios based on below 25th percentile, 

above 75th percentile and in the middle of the skewness and kurtosis of oil price changes. For drilling model 

sample, we dropped observations after the third month of drilling. 

drilling model    

percentage of drilled well-month obs 2.76% 

volatility ≤25-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 1.98% - 

25-th≤skewness≤75-th 0.81% 1.42% 2.08% 

skewness≥75-th - 1.82% - 

25-th percentile≤volatility≤50-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.69% - 

25-th≤skewness≤75-th 0.82% 1.46% 2.25% 

skewness≥75-th - 1.29% - 

50-th percentile≤volatility≤75-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 1.17% - 

25-th≤skewness≤75-th 0.63% 9.94% 2.27% 

skewness≥75-th - 1.41% - 

volatility ≥75-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.66% - 

25-th≤skewness≤75-th 0.62% 13.01% - 

skewness≥75-th - - - 

shutdown model    

percentage of closed well-month obs 0.89% 

volatility ≤25-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.18% 0.20% 

25-th≤skewness≤75-th 0.28% 0.29% 0.23% 

skewness≥75-th - 0.23%  

25-th percentile≤volatility≤50-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.34% 0.33% 

25-th≤skewness≤75-th 0.38% 0.27% 0.16% 

skewness≥75-th 0.35% 0.30% 0.16% 

50-th percentile≤volatility≤75-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.30% - 

25-th≤skewness≤75-th 0.32% 0.21% 0.19% 

skewness≥75-th - 0.14% 0.17% 

volatility ≥75-th percentile 
 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 0.37% 0.21% 

25-th≤skewness≤75-th 0.32% 0.30% - 

skewness≥75-th 0.37% 0.40% 4.37% 
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Table 7. Percentages of Well Statuses Triple-Sorted by Volatility, Skewness, and Kurtosis 

 (continued) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

production model    

percentage of producing well-month obs 89.74% 

volatility ≤25-th percentile 

 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th 88.72% 88.18% - 

25-th≤skewness≤75-th 90.34% 91.50% - 

skewness≥75-th 90.80% - - 

25-th percentile≤volatility≤50-th percentile 

 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 91.98% 86.80% 

25-th≤skewness≤75-th 91.78% 89.50% - 

skewness≥75-th 92.07% 89.71% - 

50-th percentile≤volatility≤75-th percentile 

 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 84.21% 82.90% 

25-th≤skewness≤75-th - 89.00% 83.01% 

skewness≥75-th - 87.20% 84.47% 

volatility ≥75-th percentile 

 kurtosis ≤25-th 25-th≤kurtosis≤75-th kurtosis ≥75-th 

skewness ≤25-th - 91.54% 88.98% 

25-th≤skewness≤75-th - 91.43% 90.45% 

skewness≥75-th - 91.19% 82.11% 
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Table 8 Predictions from A Complete Model and A Simplified Model 

Table 8 shows the results of the predictions for drilling activities, shutdown activities, and producing status 

of oil wells based on two alternative models - a complete model that incorporate the skewness and kurtosis 

of oil price changes, and a simplified model that excludes the tail risk variables, but everything else kept 

same. The predictions from Cox models are based on the medians of the hazard rate of dependent variable = 

1.   

 

Drilling 

Proportion of drilled well-month obs 2.76%   

Predicted drilled well-month obs from complete model 73.28%   

Predicted drilled well-month obs from simplified model 72.80%   

Predicted drilled and undrilled obs (drilled=1) simplified model 

complete model 

 0 1 

0 80.48% 0.00% 

1 1.44% 18.08% 

Percentage of different predictions 1.44%   

Shutdown 

Proportion of closed well-month obs 0.27%               

Predicted closed well-month obs from complete model 31.55%               

Predicted closed well-month obs from simplified model 7.71%               

Predicted closed and operating obs (closed=1) simplified model       

complete model 

 0 1       

0       68.45% 0.00% 

1             23.85% 7.71% 

Percentage of different predictions 23.85%               

Production 

Proportion of producing well-month obs 89.74%   

Predicted producing well-month obs from complete model 45.13%   

Predicted producing well-month obs from simplified 

model 
50.02%   

Predicted producing and mothballing obs (producing=1) simplified model 

complete model 

 0 1 

0 49.98% 4.89% 

1 0.00% 45.13% 

Percentage of different predictions 4.89%   
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Table 9 Physical Moments to Replace Implied Moments 

In Table 9, we estimate the main result models with the physical distribution central moments (volatility, 

skewness, and kurtosois) to replace the option-implied central moments in results Table 4-6. The physical 

moments are estiamted from a 360-day rolling window of oil spot price changes to estimate the realized 

distribution second, third, and fourth central moments. The daily estimates are averaged over monthly to 

matched with the monthly oil status.  *, **, and *** indicate significance at 10%, 5%, and 1%, respectively.  

 
 
 
 
 

drilling model     

dependent variable: drilling = 1 for drilled     

 coefficient robust SE p-value  

price_def 2.026 0.074 0.000 *** 

volatility -51.216 1.636 0.000 *** 

skewness 0.175 0.034 0.000 *** 

kurtosis -0.015 0.007 0.030 ** 

controls Yes    

obs 1,080,596    

wells 27,152    

log pseudolikelihood -85,400.29    

shutdown model     

dependent variable: shutdown = 1 for closed    

 coefficient robust SE p-value  

price_def -3.648 0.075 0.000 *** 

volatility -101.00 1.793 0.000 *** 

skewness 0.477 0.037 0.000 *** 

kurtosis 0.062 0.010 0.000 *** 

controls Yes    

obs 9,037,487    

wells 126,890    

log pseudolikelihood -190,716.29    

production model     

dependent variable: prod = 1 for producing    

 coefficient robust SE p-value  

l.prod 0.242 0.025 0.000 *** 

price_def 0.435 0.022 0.000 *** 

l.{prod=mothballing}×l.volatility 3.585 0.687 0.000 *** 

l.{prod=producing}×l.volatility 10.440 0.727 0.000 *** 

l.{prod=mothballing}×l.skewness 0.116 0.010 0.000 *** 

l.{prod=producing}×l.skewness -0.008 0.010 0.390  

l.{prod=mothballing}×l.kurtosis 0.009 0.002 0.000 *** 

l.{prod=producing}×l.kurtosis -0.004 0.002 0.817  

controls Yes    

obs 7,829,827    

wells 124,652    

log pseudolikelihood -731,277.70    
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Table 10. Non-Linear Effects of Tail Risks 

In Table 10, the models adding the interaction of skewnss and kurtosis are reported, as well as the results 

adding the squared skenwess, kurtosis, and the interaction. *, **, and *** indicate significance at 10%, 5%, and 

1%, respectively.  

drilling model         

dependent variable: drilling = 1 for drilled 

 coefficient robust SE p-value  coefficient robust SE p-value  

price_def 1.832 0.104 0.000  *** 2.861 0.131 0.000  *** 

volatility -4.291 0.203 0.000  *** -4.162 0.208 0.000  *** 

skewness -0.2 0.182  0.272   1.759 0.379  0.009  *** 

kurtosis 0.284  0.117 0.016  ** -4.533  0.336 0.000  *** 

skewness×kurtosis 0.144  0.219 0.510   -1.518 0.381 0.000 *** 

skewness2     3.703 0.392 0.000  *** 

kurtosis2     3.097 0.211 0.000  *** 

skewness2×kurtosis2     -2.701 0.327  0.000  *** 

controls Yes    Yes    

obs 1,080,596    1,080,596    

wells 27,152    27,152    

log pseudolikelihood -85,854.26    -85,727.19    

shutdown model         

dependent variable: shutdown = 1 for closed 

 coefficient robust SE p-value  coefficient robust SE p-value  

price_def -5.152 0.124 0.000 *** -4.554 0.140 0.000 *** 

volatility -6.388 0.251 0.000 *** -5.826 0.260 0.000 *** 

skewness 2.036 0.196 0.000 *** 4.990 0.347 0.000 *** 

kurtosis 1.062 0.143 0.000 *** 0.470 0.339 0.165  

skewness×kurtosis -1.080 0.263 0.000 *** -1.990 0.293 0.000 *** 

skewness2     4.091 0.387 0.000 *** 

kurtosis2     -0.708 0.387 0.067 * 

skewness2×kurtosis2     -0.348 0.476 0.464  

controls Yes    Yes    

obs 9,037,487    9,037,487    

wells 19,338    19,338    

log pseudolikelihood -193,572.62 -193,416.93 

 
36 The interactions of lagged status and skewness and kurtosis are dropped due to multicollinearity. 

production model         

dependent variable: prod = 1 for producing 

 coef 
robust 

SE 
p-value  coef 

robust 

SE 
p-value  

l.prod -2.343 7.571 0.757  -32.826 20.219 0.104  

price_def 0.456 0.023 0.000 *** 0.451 0.023 0.000 *** 

l.{prod=mothballing}×l.volatility 0.267 0.057 0.000 *** 0.271 0.059 0.000 *** 

l.{prod=producing}×l.volatility 0.990 0.045 0.000 *** 1.003 0.047 0.000 *** 

l.{prod=mothballing}×l.skewness -3.750 0.637 0.000 *** 0.759 1.249 0.543  

l.{prod=producing}×l.skewness -2.515 0.619 0.000 *** -3.797 1.270 0.003 *** 

l.{prod=mothballing}×l.kurtosis -0.971 0.185 0.000 *** -5.053 1.040 0.000 *** 

l.{prod=producing}×l.kurtosis -0.904 0.179 0.000 *** -1.295 1.032 0.210  

l.{prod=mothballing}×l.skewness×l.kurtosis 0.123 0.021 0.000 *** 0.104 0.021 0.000 *** 

l.{prod=producing}×l.skewness×l.kurtosis 0.084 0.020 0.000 *** 0.094 0.022 0.000 *** 

l.{prod=mothballing}×skewness2     -0.228 0.053 0.000 *** 

l.{prod=mothballing}×kurtosis2     0.070 0.017 0.000 *** 

l.{prod=mothballing}×skewness2×kurtosis2     -36 - -  

l.{prod=producing}×skewness2     0.055 0.053 0.298  

l.{prod=producing}×kurtosis2     0.005 0.017 0.776  

l.{prod=producing}×skewness2×kurtosis2     - - -  

controls Yes   Yes   

obs 7,829,827   7,829,827   

wells 124,652   124,652   

log pseudolikelihood -730,922.51   -730,906.10   
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Table 11 Higher-Order Moments 

Table 11 reports the results of drilling, shutdown, and producing and mothballing decisions related to the 

changes in higher-order (2th to 8th-) distribution moments, estimated from oil price changes realized moments. 

Ri gives the i-th distribution moments of oil price changes.  *, **, and *** indicate significance at 10%, 5%, 

and 1%, respectively.  

drilling model         

dependent variable: drilling = 1 for drilled 

 Coef 
Robust 

SE 

p-

value 
 Coef 

Robust 

SE 

p-

value 
 

price_def 2.315 0.071 0.000  *** 2.289 0.069 0.000  *** 

R2 -1.983 0.238 0.000  *** -1.256 0.612 0.040  ** 

R3 0.001 0.000  0.000  *** 0.006 0.000  0.000  *** 

R4 0.067  0.018 0.004  *** -0.644  0.167 0.000  *** 

R5     -0.820  0.048 0.000  *** 

R6     1.195  0.124 0.000  *** 

R7     2.569  0.176 0.000  *** 

R8     -3.926  0.311 0.000  *** 

controls Yes   Yes   

obs 1,080,596   1,080,596   

wells 27,152    27,152    
log pseudolikelihood -86,001.51   -85,633.46   

shutdown model         

dependent variable: shutdown = 1 for closed 

 Coef 
Robust 

SE 

p-

value 
 Coef 

Robust 

SE 

p-

value 
 

price_def -3.382 0.087 0.000 *** -2.730 0.082 0.000 *** 

R2 -4.929 0.269 0.000 *** -11.393 0.769 0.000 *** 

R3 0.001 0.000 0.000 *** 0.009 0.000 0.000 *** 

R4 0.145 0.024 0.000 *** 1.238 0.197 0.000 *** 

R5     -1.138 0.068 0.000 *** 

R6     0.512 0.145 0.000 *** 

R7     3.470 0.239 0.000 *** 

R8     -3.700 0.389 0.000 *** 

controls Yes   Yes   

obs 9,037,487   9,037,487   

wells 126,890  126,890 

log pseudolikelihood -193,772.48   -192,040.08   

 
*production model’s estimates failed due to limited data variability.
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Table 12 Hedging Strategies and Investment Choices Under Tail Risks 

Table 12 shows the empirical regression results of the main models adding the hedging ratio of firms.  Hedging ratio is calculated as the fiscal year’s hedging 

derivatives’ positions to the production quantity in oil of the main operator of oil wells. Hedging ratios are manually collected from 10-k. *, **, and *** indicate 

significance at 10%, 5%, and 1%, respectively.  
hedging ratio mean median S.D. min  max        
obs=415 44.97% 30.10% 66.64% 0% 682.54%        

drilling model             

dependent variable: drilling = 1 for drilled    non-hedgers   hedgers    

 coefficient robust SE p-value  coefficient robust SE p-value  coefficient robust SE p-value  

price_def 3.174 0.205 0.000 *** 2.003 0.555 0.000  *** 3.379 0.227 0.000  *** 

volatility -3.189 0.420 0.000 *** -3.929 0.952 0.000  *** -2.505 0.397 0.000  *** 

skewness -0.380 0.165 0.021 ** 0.841  0.532  0.114   -0.520  0.156  0.001  *** 

kurtosis -0.102 0.187 0.584  0.244 0.563 0.665   0.058 0.170  0.733   

hedging ratio -0.339 0.118 0.004 ***         

hedging ratio×volatility 0.799 0.527 0.130          

hedging ratio×skewness 0.078 0.161 0.630          

hedging ratio×kurtosis 0.332 0.216 0.125          

inverse mills ratio     -4.06×10-29 1.14×10-29 0.000  *** -5.75×10-29 9.76×10-29 0.556   

controls Yes    Yes    Yes    
obs 242,923    41,653    201,270    
wells 7,570    1,837    6,729    
log pseudolikelihood -20,773.24    -2,181.60    -17,511.92    

shutdown model             

dependent variable: shutdown = 1 for closed    non-hedgers   hedgers    

 coefficient robust SE p-value  coefficient robust SE p-value  coefficient robust SE p-value  

price_def -7.273 0.269 0.000 *** -6.298 0.472 0.000  *** -7.709 0.346 0.000  *** 

volatility -6.047 0.468 0.000 *** -6.188  0.88 0.000  *** -3.168 0.425 0.000  *** 

skewness 2.296 0.229 0.000 *** 2.512 0.340  0.000  *** 2.343 0.274 0.000  *** 

kurtosis 2.049 0.197 0.000 *** 2.585  0.302 0.000  *** 2.206 0.214 0.000  *** 

hedging ratio -0.705 0.145 0.000 ***         

hedging ratio×volatility 5.656 0.534 0.000 ***         

hedging ratio×skewness 0.993 0.160 0.000 ***         

hedging ratio×kurtosis 0.761 0.185 0.000 ***         

inverse mills ratio     -7.67×10-25 9.07×10-25 0.398   1.47×10-38 3.23×10-39 0.000  *** 

controls Yes    Yes    Yes    
obs 1,963,502    594,765    1,336,994    
wells 32,677    12,035    26,692    
log pseudolikelihood -34,468.601    7,795.92    -24,153.22    
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Table 12 Hedging Strategies and Investment Choices Under Tail Risks 

(continued) 

 
production model             
dependent variable: prod = 1 for producing     non-hedgers    hedgers    

 coefficient robust SE p-value  coefficient robust SE p-value  coefficient robust SE p-value  

l.prod 7.586 2.121 0.000 *** 3.152 4.748 0.507  6.660 2.387 0.005 *** 

price_def 0.746 0.086 0.000 *** 0.233 0.199 0.241  0.565 0.068 0.000 *** 
l.{prod=mothballing}×l.volatility 0.062 0.241 0.796  -0.650 0.405 0.108  1.214 0.176 0.000 *** 

l.{prod=producing}×l.volatility 1.026 0.152 0.000 *** 1.013 0.294 0.001 *** 0.714 0.127 0.000 *** 
l.{prod=mothballing}×l.skewness 0.246 0.078 0.002 *** -0.239 0.177 0.176  0.241 0.062 0.000 *** 

l.{prod=producing}×l.skewness 0.157 0.048 0.001 *** 0.443 0.109 0.000 *** -0.115 0.044 0.008 *** 

l.{prod=mothballing}×l.kurtosis 0.061 0.053 0.250  0.063 0.098 0.517  0.033 0.058 0.576  
l.{prod=producing}×l.kurtosis -0.149 0.051 0.003 *** -0.226 0.108 0.037 ** -0.063 0.044 0.156  
hedging ratio 2.878 1.722 0.095 *         
hedging ratio×l.{prod=mothballing}×l.volatility 1.571 0.294 0.000 ***         
hedging ratio×l.{prod=producing}×l.volatility -0.380 0.152 0.012 **         
hedging ratio×l.{prod=mothballing}×l.skewness -0.005 0.069 0.941          
hedging ratio×l.{prod=producing}×l.skewness -0.286 0.050 0.000 ***         
hedging ratio×l.{prod=mothballing}×l.kurtosis -0.106 0.049 0.031 **         
hedging ratio×l.{prod=producing}×l.kurtosis -0.011 0.051 0.834          
inverse mills ratio     -4.54×10-37 8.75×10-38 0.000 *** -2.16×10-39 2.18×10-39 0.323  
controls Yes    Yes    Yes    
obs 1,504,422    402,912    1,101,511    
wells 26,906    9,804    22,182    
log pseudolikelihood -87,288.14    -24,508.72    -62,415.97    
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Table 13 Impact of Financial Leverage on Investment Choices under Tail Risks 

Table 13 reports the regression results of the impact of tail risks on investment choices of oil wells adding the financial 

leverage of main operators. Financial leverage is calculated as debt-to-equity ratio where data were obtained from 

Compustat. 
drilling model     

dependent variable: drilling = 1 for drilled     

 coefficient robust SE p-value  

price_def 2.475  0.163  0.000  *** 

volatility -4.237  0.314  0.000  *** 

skewness -0.203  0.114  0.074  * 

kurtosis 0.133 0.218  0.299   

leverage 0.032  0.015 0.033  ** 

leverage×volatility -0.077 0.024 0.001  *** 

leverage×skewness 0.021 0.027 0.431   

leverage×kurtosis 0.003 0.015 0.846   

controls Yes    

obs 395,760    

wells 11,675    

log pseudolikelihood -32,960.31    

shutdown model     

dependent variable: shutdown = 1 for closed     

 coefficient robust SE p-value  

price_def -5.606 0.202 0.000  *** 

volatility -6.208 0.367 0.000  *** 

skewness 1.714 0.173  0.000  *** 

kurtosis 1.669  0.159 0.000  *** 

leverage -0.032  0.028  0.263   

leverage×volatility -0.043  0.049  0.381   

leverage×skewness -0.169  0.055  0.002  *** 

leverage×kurtosis 0.001  0.029  0.982   

controls Yes    

obs 3,321,885    

wells 52,188    

log pseudolikelihood -55,807.49    

production model     

dependent variable: prod = 1 for producing     

 coefficient robust SE p-value  

l.prod 12.057 1.459 0.000 *** 

price_def 0.415 0.076 0.000 *** 

l.{prod=mothballing}×l.volatility 0.221 0.177 0.210  

l.{prod=producing}×l.volatility 0.939 0.123 0.000 *** 

l.{prod=mothballing}×l.skewness 0.150 0.044 0.001 *** 

l.{prod=producing}×l.skewness -0.042 0.032 0.184  

l.{prod=mothballing}×l.kurtosis 0.150 0.034 0.000 *** 

l.{prod=producing}×l.kurtosis -0.170 0.030 0.000 *** 

leverage 0.018 0.135 0.892  

l.{prod=mothballing}×l.volatility×leverage 0.005 0.022 0.811  

l.{prod=producing}×l.volatility×leverage -0.043 0.020 0.033 ** 

l.{prod=mothballing}×l.skewness×leverage -0.008 0.010 0.366  

l.{prod=producing}×l.skewness×leverage -0.016 0.007 0.016 ** 

l.{prod=mothballing}×l.kurtosis×leverage 0.002 0.005 0.724  

l.{prod=producing}×l.kurtosis×leverage 0.004 0.006 0.431  

controls Yes    

obs 2,521,038    

wells 43,675    

log pseudolikelihood -121,859.79    

 
 
 
 



52 
 

 
Table 14 Term Structure Shape and Investment Under Tail Risks 

In Table 14, the variables for the shape of term structure of oil prices are added to the main models. R is defined as 

Rt = 𝑃𝑁𝑒𝑎𝑟𝑒𝑠𝑡,𝑡/𝑃𝐷𝑖𝑠𝑡𝑎𝑛𝑡,𝑡 − 1. So higher R suggests a higher oil prices at nearer terms and lower oil prices at more 

distant terms. Contango = 1 for negative R, 

drilling model         

dependent variable: drilling = 1 for drilled 

 Coef 
Robust 

SE 
p-value  Coef 

Robust 

SE 
p-value  

price_def 1.829 0.104 0.000  *** 1.825 0.105 0.000  *** 

volatility -4.576 0.254 0.000  *** -4.292 0.267 0.000  *** 

skewness -0.127 0.078  0.102   -0.087 0.076  0.254   

kurtosis 0.245  0.084 0.003   0.233  0.084 0.005   

R -0.447  0.216 0.039  **     

contango     0.004  0.032 0.907   

controls Yes Yes 

obs 1,080,596 1,080,596 

wells 27,152    27,152    
log pseudolikelihood -85,852.40 -85,854.49 

shutdown model         

dependent variable: shutdown = 1 for closed 

 Coef 
Robust 

SE 
p-value  Coef 

Robust 

SE 
p-value  

price_def -5.005 0.124 0.000 *** -5.182 0.123 0.000 *** 

volatility -9.160 0.322 0.000 *** -6.624 0.319 0.000 *** 

skewness 0.887 0.115 0.000 *** 1.368 0.102 0.000 *** 

kurtosis 1.391 0.103 0.000 *** 1.484 0.098 0.000 *** 

R -3.527 0.237 0.000 ***     
contango     0.044 0.036 0.216  

controls Yes Yes 

obs 9,037,487 9,037,487 

wells 126,890    126,890    

log pseudolikelihood -193,226.02 -193,586.96 

production model         

dependent variable: prod = 1 for producing 

 Coef 
Robust 

SE 
p-value  Coef 

Robust 

SE 
p-value  

l.prod 8.514 0.522 0.000 *** 8.602 0.521 0.000 *** 

price_def 0.503 0.026 0.000 *** 0.481 0.024 0.000 *** 

l.{prod=mothballing}×l.volatility -0.017 0.051 0.741  0.112 0.054 0.037 ** 

l.{prod=producing}×l.volatility 0.708 0.042 0.000 *** 0.844 0.044 0.000 *** 

l.{prod=mothballing}×l.skewness 0.033 0.013 0.007 *** 0.020 0.012 0.100  

l.{prod=producing}×l.skewness 0.050 0.012 0.000 *** 0.036 0.012 0.002 *** 

l.{prod=mothballing}×l.kurtosis 0.122 0.012 0.000 *** 0.102 0.012 0.000 *** 

l.{prod=producing}×l.kurtosis -0.160 0.012 0.000 *** -0.183 0.012 0.000 *** 

R -0.529 0.051 0.000 ***    *** 

contango     0.063 0.005 0.000 *** 

controls Yes Yes 

obs 7,829,827 7,829,827 

wells 124,652    124,652    
log pseudolikelihood -730,791.62 -730,792.31 
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Figure 1. Oil Price and Central Moments 

Figure 1. (1) and (2) show the histogram of three-month lagged 18-month oil futures price and graph of the price to date, respectively; (3) and (4) 

shows the histogram of 18-month three-month lagged option-implied volatility and graph of the volatility to date, respectively; (5), (6), (7), and (8) 

shows the histograms of 18-month three-month lagged option-implied skewness and kurtosis and the graphs of the central moments to dates, 

respectively. Oil price is scaled by 100 and deflated by CPI. (9)-(11) shows the average percentage of drilled, closed, or producing number of wells 

over time. (12)-(14) shows the average control variables. 
(1) 

 

(2) 

 

(3) 

 

(4) 

 
(5) 

 

(6) 
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(9) Percentage of drilled wells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) Percentage of Closed Wells                                                        (11) Percentage of Producing Wells 
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(12) Average Drilling Cost (Deflated), Cost in $, and Log of Cost         (13) Average Cumulative Oil Production, Well Depth, Reserve, and Age 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14) Average Latest 12-Month Oil Production 
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Figure 2. The Percentage of Different Predictions Between the Complete and the Simplified Models 

Figure 2 displays the time-series of the percentage of observations with different predictions from the 

complete model that includes skewness and kurtosis and the simplified model that does not. 

(a) Drilling Predictions 

 

 

 

 

 

 

 

(b) Shutdown Predictions 

 

 

 

 

 

 

 

(c) Production Predictions 
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Appendix A. Computation of BKM Option-Implied Risk-Neutral Central Moments 

We obtain crude oil (symbol: CL) options on futures prices and futures prices from the CME Group 

Datasets (End of Day Complete database). Only option prices with maturities between 10 and 180 days are 

used, which are the most liquid options contracts. We manually dropped some outliers when the prices is 

100 times greater than average, which is identified as data input error. Risk-free rates are obtained from the 

OptionMetrics files. Risk-free rates are extrapolated and interpolated to ensure sufficient risk-free rates for 

maturities of 10-180 days. We follow Chang, Christoffersen, and Jacobs (2013) and Ruan and Zhang (2018), 

when computing the risk-neutral central moments. We filter data by dropping option prices lower than 3/8 

(minimum tick) and deep-in-the-money options (put options with an exercise price higher than 103% of 

futures price and call options with an exercise price lower than 97% of futures price) as well as drop days 

with fewer than 2 puts or calls prices, and the options prices violating the spot-futures arbitrage condition. 

We expand moneyness for each date and maturity to the range between 0.0001 and 3 and use the implied 

volatility (from CME’s modified Black-Scholes option pricing model) to interpolate and extrapolate 

implied volatilities in that range. Next, we use the implied volatility to infer option prices using the Black-

Scholes options on futures model to obtain a smooth option price in the moneyness 0.0001 and 3 for each 

date and maturity. With futures price and option prices in the moneynesses range [0.0001,3], we calculate 

option implied volatility, skewness, and kurtosis following Bakshi, Kapadia, and Madan (2003) using the 

trapezoidal integration following Chang, Christoffersen, and Jacobs (2013) and Ruan and Zhang (2018). 

We then compute the 18-month BKM risk-neutral central moments. We use futures prices to estimate the 

term structure of oil return realized central moments, then use the 10-180 days central moments to 

interpolate the one-month maturity central moments. We then use the one-month central moments and term 

structure to extrapolate 18-month maturity central moments. The last step is to take three-month lags of the 

central moments for drilling and shutdown model moments.  The methods are similar to those employed 

by Kellogg (2014) when computing forward looking implied volatilities. 
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Appendix B. Derivation of Solution to the Profit Function 

We begin with a discussion of the choices regarding the producing status of a well, under the 

assumption that the status is chosen by selecting those decisions that are value maximizing at each future 

date over the expected life of the well.  Assume the well has been drilled and completed and from that point 

on could either be producing or not producing (we will take up the decision to drill later). Assume a risk-

neutral expected-payoff maximizing representative producer who must decide whether to make an 

irreversible investment when the producer’s oil well’s current status is “mothballing”, i.e., production is 

temporarily shut-in. Define the state of a well as prod=p for “producing” and prod=m for “mothballing”, 

respectively. The producer may immediately re-open the oil well and re-start production incurring an 

irreversible (sunk) investment cost, but will then receive the net payoffs from produced crude oil based 

upon  a random future stream of output prices 𝑃,operating costs 𝐶𝑝, and production volumes Q. The cost 

to switch from mothballed to producing is assumed to equal ℂ𝑚,𝑝 and is not recoverable. However, the 

producer may choose to defer the decision – use the “delay option” to delay the decision to a future date. 

By waiting the producer can observe an updated price level resolving uncertainty from t to to t+1.  

Similarly, the producer can choose to temporarily shut in an operating well, that is, to change to 

“mothballing” when current status is “producing”. The revenues from production (as discussed previously, 

a function of output prices 𝑃, operating costs 𝐶𝑝, and production volumes Q) will be sacrificed and the 

representative producer maintain the oil well by costing maintenance cost 𝐶𝑚. The producer may choose 

to defer the decision with the “delay option” to postpone until next date. Price uncertainty is resolved by 

using the “delay option”. To summarize, we assume that if a well is producing an operating cost is incurred 

and if the well is mothballed a maintenance cost is incurred each period. The operating cost of the producing 

well is 𝐶𝑝 and the maintaining cost of the mothballed well is 𝐶𝑚. The operating cost is incurred only when 

prod=p, and the maintaining cost is incurred each period only when prod=m.  The value of the immediate 

choice to switch equals the discounted expected payoff stream less the switching cost ℂ𝑝,𝑚 (the net present 

value of the immediate choice). Assume that for a given well, C, ℂ, and 𝜃 are static parameters for each 

well where 𝜃 includes observed and unobserved other variables affecting investment value. Assume that 

ℂ = ℂ𝑚,𝑝 = ℂ𝑝,𝑚. 

Define the value function 𝑉(𝑃, 𝑄, 𝐶, 𝜃, 𝑂(ℂ)), where value depends upon future oil prices P and 

the distribution of those prices, production quantity Q, operating cost 𝐶𝑝, maintaining cost 𝐶𝑚, other well 

characteristics 𝜃, and the options to “mothball” and to “produce” which are exercised at an investment cost 

ℂ .  If the state of the well is mothballed then the option to switch to production is in force and if the state of the well is producing the option to 

switch to mothballing in is force. The options have values denoted as 𝑂𝑚(𝑃, 𝑄, 𝐶𝑚, ℂ, 𝜃) and 𝑂𝑝(𝑃, 𝑄, 𝐶𝑝, ℂ, 𝜃)    

which arise from the options to switch from “producing” to “mothballing” and from “mothballing” to 
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“producing”, respectively.  So the value function consists of three components: the profit that depends on 

𝑃𝑡 and 𝑄𝑡, the costs 𝐶𝑝 or 𝐶𝑚, and the real options 𝑂𝑚 or 𝑂𝑝.  The producer faces a multiperiod problem 

of selecting production as well as the optimal policy for exercising the options. The producer is assumed to 

follow a policy that maximizes an expected payoff function by choosing the optimal investment time t to 

exercise the option to switch, conditional on the current state of the well and an optimal policy concerning 

production.  

Assume for illustration that the current state is prod = m (mothballing). The optimal choice to 

switch or continue with the current state of the well (that is delay switching) will define an optimal 

investment trigger price P*.  If the actual price exceeds the trigger price then the option would be exercised. 

That trigger price will be a function of the expected future distributional characteristics of the price change 

distribution.  Define the implicit objective function 𝛾  where the optimal policy defines the selection of the 

state of the well at each date as: 

𝛾 = max
𝑝𝑟𝑜𝑑

𝑉(𝑃, 𝑄, 𝐶, ℂ, 𝜃, 𝑂) 

where 𝑃 represents  the expected price distribution at t, 𝑄 is the set of quantities produced each 

period over the production horizon of the well, 𝐶 represents the operating cost (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝐶𝑝) stream of 

each period, including both fixed and variable cost if 𝑝𝑟𝑜𝑑 = 𝑝, and the cost of maintaining the well if 

𝑝𝑟𝑜𝑑 = 𝑚 (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝐶𝑚). ℂ is the switching investment cost. The vector 𝜃 contains both observed and 

unobserved well characteristics that affect production decisions, and 𝑂 is the set of options the producer 

faces in each period (for instance, 𝑂 = 𝑂𝑝 𝑖𝑓 𝑝𝑟𝑜𝑑 = 𝑚).  The behavior and distribution of 𝑃 is assumed 

to be exogenously determined and is a function of time t and depends both on the expected price change, 

and the anticipated volatility, skewness, and kurtosis reflected in the price distribution. 

𝑃 = 𝑃(𝜇, 𝜎, 𝑠𝑘, 𝑘|𝑡) 

where 𝜇 is the expected change, 𝜎 is volatility, 𝑠𝑘 is skewness, and 𝑘 is the kurtosis of the price 

change distribution.  Oil prices are determined in a world market and so this assumption conforms to both 

the actual market environment and the data (Kaminski (2012), U.S. Energy Information Administration 

https://www.eia.gov/energyexplained/oil-and-petroleum-products/prices-and-outlook.php).37 

Define the multi-period dynamic problem of the producer as:  

 
37 It is worth pointing out that a process for oil prices that exhibits mean reversion and random jumps as well as a 

continuous stochastic error, as has been found in the literature (Al-harthy (2007)) produces a price change distribution 

that exhibits both non-zero skewness and excess kurtosis for reasonable parameter values.  
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𝛾 = max
𝑝𝑟𝑜𝑑

𝐸𝑡(𝑉(𝑃, 𝑄, 𝐶, ℂ, 𝜃, 𝑂)) = max
𝑝𝑟𝑜𝑑

(𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡) +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡)) 

where 
1

(1+𝑟)
  is the discount factor, 𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡) is the profit function at t given the current 

information set and 𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡) is the expectation of the continuing value function at t+1 given the 

producing status choice at t, 𝑝𝑟𝑜𝑑𝑡 assuming an optimal policy subsequent to t+1, where we have assumed 

that the expectation exists and that the price process is exogenous to the firm.38 The value function at t can 

be rearranged to contain two maximized terms: the first term is the profit function at t, and the second is 

the discounted expected value function at t+1 given producing status choice at t and an optimal policy 

following t. The production state prod is selected at t to maximize the sum of the two terms. The investment 

choice at t therefore depends upon the production state at t-1. If the representative oil producer chooses 

𝑝𝑟𝑜𝑑𝑡 = 𝑝 when 𝑝𝑟𝑜𝑑𝑡−1 = 𝑝, the above equation becomes:  

𝑉𝑡(𝑝𝑟𝑜𝑑𝑡 = 𝑝, 𝑝𝑟𝑜𝑑𝑡−1 = 𝑝) = 𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡) +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝)

= �̌�(𝑃𝑡, 𝑄𝑡 , 𝜃) − 𝐶𝑝 +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝) 

�̌�(𝑃𝑡, 𝑄𝑡 , 𝜃) − 𝐶𝑝= 𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡) for 𝑝𝑟𝑜𝑑𝑡 = 𝑝 when 𝑝𝑟𝑜𝑑𝑡−1 = 𝑝.  

We henceforth drop the notation for the information set  𝕀𝑡 as it is implicit.  

When 𝑝𝑟𝑜𝑑𝑡−1 = 𝑚  and the representative producer chooses 𝑝𝑟𝑜𝑑𝑡 = 𝑝 , the value function 

becomes: 

𝑉𝑡(𝑝𝑟𝑜𝑑𝑡 = 𝑝, 𝑝𝑟𝑜𝑑𝑡−1 = 𝑚) = �̌�(𝑃𝑡, 𝑄𝑡 , 𝜃) − 𝐶𝑝 − ℂ +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝) 

�̌�(𝑃𝑡, 𝑄𝑡 , 𝜃) − 𝐶𝑝 − ℂ  = 𝜋(𝑃𝑡 , 𝑄𝑡 , 𝐶, ℂ, 𝜃|𝕀𝑡 ) for 𝑝𝑟𝑜𝑑𝑡 = 𝑝  when 𝑝𝑟𝑜𝑑𝑡−1 = 𝑚 . The only 

difference is that transitioning from “mothballing” to “producing” incurs a one-time sunk cost ℂ. Similarly 

if the representative producer chooses 𝑝𝑟𝑜𝑑𝑡 = 𝑚 when 𝑝𝑟𝑜𝑑𝑡−1 = 𝑚, the value equation is: 

𝑉𝑡(𝑝𝑟𝑜𝑑𝑡 = 𝑚, 𝑝𝑟𝑜𝑑𝑡−1 = 𝑚) = −𝐶𝑚 +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚) 

If the representative producer chooses 𝑝𝑟𝑜𝑑𝑡 = 𝑚 when 𝑝𝑟𝑜𝑑𝑡−1 = 𝑝: 

𝑉𝑡(𝑝𝑟𝑜𝑑𝑡 = 𝑚, 𝑝𝑟𝑜𝑑𝑡−1 = 𝑝) = −𝐶𝑚 − ℂ +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚) 

 
38 The reader will recognize this as a Bellman equation. Molls (2001) presents a similar specification. 
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where 𝐶𝑚 is the maintenance cost in “mothballing” periods, and the only difference between the 

two equations is the term −ℂ, the one-time transitioning cost from “producing” to “mothballing”. 

The well operator is assumed to select the choice that maximizes value conditional on the current 

state of the well (m or p).  Therefore, if maximizing behavior is assumed, the choice observed implies that 

choice has the largest current value, this of course also implies the choice carries with it an optimal policy 

going forward.  Mothballing incurs a per period cost while a complete shut down does not, hence it would 

never be optimal to switch from complete shutdown to the mothball state. 

When  𝑝𝑟𝑜𝑑𝑡−1 = 𝑚 , the difference in the value equation between choosing 𝑝𝑟𝑜𝑑𝑡 = 𝑝  and 

choosing 𝑝𝑟𝑜𝑑𝑡 = 𝑚 will equal: 

∆𝑉𝑡(𝑝𝑟𝑜𝑑𝑡−1 = 𝑚)

= �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃) − 𝐶𝑝 − ℂ +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝)

− (−𝐶𝑚 +
1

(1 + 𝑟)
𝐸𝑡(𝕍𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚))

= �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃) − 𝐶𝑝 − ℂ + 𝐶𝑚 +
1

(1 + 𝑟)
(𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝) − 𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚)) 

When  𝑝𝑟𝑜𝑑𝑡−1 = 𝑝 , the difference in the value equation between choosing 𝑝𝑟𝑜𝑑𝑡 = 𝑝  and 

choosing 𝑝𝑟𝑜𝑑𝑡 = 𝑚 equals: 

∆𝑉𝑡(𝑝𝑟𝑜𝑑𝑡−1 = 𝑝)

= �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃) − 𝐶𝑝 +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝)

− (−𝐶𝑚 − ℂ +
1

(1 + 𝑟)
𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚))

= �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃) − 𝐶𝑝 + ℂ + 𝐶𝑚 +
1

(1 + 𝑟)
(𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑝) − 𝐸𝑡(𝑉𝑡+1|𝑝𝑟𝑜𝑑𝑡 = 𝑚)) 

The difference is twice the one-time transitioning cost from “mothballing” to “producing” (or from 

“producing” to “mothballing”), 2ℂ.39 

If there were no sunk costs associated with switching between production and mothballing then 

switching would be costless and instantaneous.  In that case the future continuation value vanishes because 

the lagged state, that is the state coming into time t, will have no influence on future decisions.  In the 

 
39 We assume that the transitioning cost from “mothballing” to “producing” is the same as the cost from “producing” 

to “mothballing”, as a consequence, the difference between these two equations is twice the cost. If the transitioning 

costs are different (ℂ𝑚𝑝 𝑎𝑛𝑑 ℂ𝑝𝑚), the difference between these two equations become ℂ𝑚𝑝+ℂ𝑝𝑚. 



62 
 

presence of sunk costs however, the lagged production state matters for the current choice of production 

state. If sunk switching costs are zero, the firm will produce if current profit is positive and will shut down 

if profit is negative. Mothballing would never occur since mothballing incurs a per period cost. Conversely 

the larger are the non-recoverable switching sunk costs, the more important is the lagged production status 

for the current period production choice. 

The value effect from the optimal choice to switch from production to mothballing, or vice versa 

therefore implicitly defines a decision rule.  The decision to switch will depend upon the distributional 

properties of future price changes and the remaining parameters of the model including the cost of switching.   

The profit function is determined by the oil price, quantity produced, and well characteristics, �̌�(𝑃𝑡 , 𝑄𝑡 , 𝜃). 

Given that the price is a random variable it can be characterized by the parameters of its probability 

distribution which we define as the expected future price, volatility, skewness, and kurtosis at t, conditional 

on the information set at time t. In addition, the difference in value function (−𝐶𝑝 + ℂ + 𝐶𝑚) is related to 

the operating cost, maintaining cost, as well as the transition cost.  We re-write the difference in the value 

function ∆𝑉𝑡 as reduced form equations: 

∆𝑉𝑡(𝑝𝑟𝑜𝑑𝑡−1 = 𝑚) = 𝛾0
𝑚 + 𝛾𝑃

𝑚 ∙ 𝑃𝑡+𝛾𝑄
𝑚 ∙ 𝑄𝑡 + 𝛾𝐶

𝑚 ∙ 𝐶 + 𝛾𝜃
𝑚 ∙ 𝜃 + 𝛾𝐶𝑚

𝑚 ∙ 𝐶𝑚 + 𝛾ℂ
𝑚 ∙ ℂ + 𝜀𝑡

𝑚 

and: 

∆𝑉𝑡(𝑝𝑟𝑜𝑑𝑡−1 = 𝑝) = 𝛾0
𝑝

+ 𝛾𝑃
𝑝

∙ 𝑃𝑡+𝛾𝑄
𝑝

∙ 𝑄𝑡 + 𝛾𝐶
𝑝

∙ 𝐶 + 𝛾𝜃
𝑝

∙ 𝜃 + 𝛾𝐶𝑚
𝑝

∙ 𝐶𝑚 + 𝛾ℂ
𝑝

∙ ℂ + 𝜀𝑡
𝑝
 

  

 

 

 

 

 

 


